

CONNECT AND PROTECT

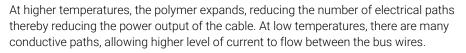
COMMERCIAL HEAT TRACING Products and services

RAYCHEM

NVENT

We provide quality solutions for winter safety, comfort and performance to building and infrastructure design, construction, operation and maintenance professionals. From pipe freeze protection to maintaining

THE HEART OF OUR SOLUTIONS


fluid temperatures and melting snow, detecting leaks or heating floors, you can rely on nVent RAYCHEM solutions and services for greater safety, comfort and performance.

As the inventor of self-regulating heat tracing in 1970, the nVent RAYCHEM brand is recognized for technical leadership in the industries we serve. The cable delivers the right amount of heat exactly when and where it is needed. As the temperature drops, more heat is produced. Conversely, as the temperature rises, less heat is produced. But there are many more benefits:

- The smart cables can be overlapped without any risk of overheating.
- The heating cables can be cut to length 'in the field'. This means additional flexibility when plans do not correspond to the "real life" situation on site.

Our mineral insulated heating cables and wiring have led the industry for more than 75 years. Able to withstand extreme, harsh environments, our cables provide the most reliable heat tracing solution for high-temperature applications.

SELF-REGULATING TECHNOLOGY - RIGHT AMOUNT OF HEAT

Producing the 'right amount of heat' saves you money with no wasted energy.

'High' Temperature-Few Conductive Paths Less Heat Produced

'Mid' Temperature-Few Conductive Paths Self Regulating In Action

'Low' Temperature-Many Conductive Paths More Heat Produced

TESTED AND QUALIFIED

• nVent RAYCHEM's range of heating systems are tested to the most stringent industry standards to ensure maximum reliability and performance for our customers.

ROBUST CONSTRUCTION

• Long service life assured through modified polyolefin or fluorpolymer insulation and jacket materials.

LIFE EXPECTANCY

• Extensive scientific testing and field history prove that when properly installed and maintained, the self-regulating cables are expected to work for many decades.

It's More Than a Cable!

The combination of a self-regulating heating cable and smart control system allows for dynamic management of the heating cable's power output dependent on parameters such as ambient temperature and moisture. These will help you comply with today's building regulations on energy savings. A complete nVent RAYCHEM system can result in energy savings of up to 80%!

Additionally, nVent RAYCHEM connection systems have been designed and configured to be fully compatible with our heating cables. The nVent RAYCHEM RayClic connection system cuts installation time by 80%.

CUSTOMER SERVICE AND TECHNICAL SUPPORT TEAMS

nVent RAYCHEM offers a set of tools and services that aim to simplify the professional's life. Not only do we offer the best quality products, we also support them with unrivalled services.

- Customer service agents to answer your questions
- Fast order handling & shipment
- Free documentation service
- "On demand" technical advice

- · Designs and quotations
- · Direct support to specifiers and installers
- Training support upon request
- Complete after-sale service
- · For non-standard applications, our team can assist you in finding the right heating solution Call 1-800-545-6258

BEST PRODUCT SELECTION, DESIGN TOOLS AND PROJECT SERVICES EXPERTS

nVent RAYCHEM offers the widest range of heat tracing products for safety, comfort, and performance applications for commercial construction. To compliment this, we offer a full-suite of intuitive designer tools to make it easy to create optimal heat-trace designs for your specific applications (see pg 22).

Most importantly, we are the heat-trace experts and the leading full-service integrator for heat management systems. Our Project Services team partners with you to address all types of projects, from buildings to complex infrastructure, to optimize solutions that enhance safety, comfort and performance.

Pipe Freeze Protection

Flow Maintenance

Roof & Gutter De-Icing

Surface Snow Melting

Freezer Frost Heave Prevention

Floor Heating

Hot Water Temperature Maintenance

Project Services

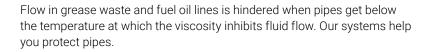
Protect Pipes

Unprotected pipes

XL-Trace System

Water lines and fire protection lines can freeze and burst when exposed to cold temperatures. Our systems help you prevent this.

PIPE FREEZE PROTECTION OF WATER LINES


nVent RAYCHEM pipe freeze protection systems are flexible and easy to attach to the exterior of the pipe to keep pipes from freezing, bursting, and causing water damage. nVent RAYCHEM XL-Trace systems can add a precise level of heat to prevent water pipes from freezing.

PIPE FREEZE PROTECTION OF FIRE PROTECTION LINES

XL-Trace fire sprinkler freeze protection systems can freeze protect aboveground and buried supply pipes, fire standpipes, branch lines and branch lines containing sprinklers when run in areas subject to freezing. XL-Trace is c-CSA-us Certified for use on fire suppression systems under CSA C22.2 No. 130- 03 for Canada and IEEE 515.1-2005 for the US.

GREASE WASTE FLOW MAINTENANCE

XL-Trace grease waste flow maintenance systems is designed to maintain a 110°F (43°C) fluid temperature to keep the Fat, Oil, Grease mixture (FOG) in suspension from the kitchen to the grease interceptor. By maintaining flow in even the most demanding commercial kitchens, this system can reduce costs associated with maintenance and down-time.

RAYCHEM

vent

Unprotected pipes

XL-Trace System

FUEL OIL MAINTENANCE

XL-Trace fuel oil flow maintenance systems can maintain #2 fuel oil lines above the temperature at which the viscosity inhibits fluid flow.

Protect Roofs, Gutters & Windows

Unprotected roof and gutters

RIM System

RIM2 System

Ice dams can form on roofs, in gutters, and downspouts preventing water from properly draining which can result in water damage. Heavy icicles can fall and cause serious injury. Standing water can leak through to interior walls and furnishings. Our systems help you protect roofs, gutters, and downspouts.

ROOF & GUTTER DE-ICING - RIM

nVent RAYCHEM's Roof Ice Melt (RIM) system is the premier, highest performing, aesthetically elegant roof & gutter de-icing solution ideal for new construction or renovation of residential or commercial buildings. The system consists of metallic panels that embed self-regulating heat tracing cable to provide high power output. RIM system with 3 runs of cable is ideal for heavy snow load areas. RIM2 system with 2 runs of cable is ideal for light to moderate snow load areas.

ROOF & GUTTER DE-ICING – ICESTOP

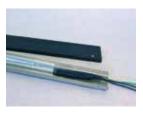
nVent RAYCHEM IceStop is an advanced, high performing, specified roof & gutter de-icing solution ideal for commercial buildings in light to heavy snow load areas. It can be cut to length for easy installation in plastic, copper, steel, or aluminum gutters, and on flat or pitched roofs, valleys and overhangs. The low operating temperature of the heating cable also makes it safe for use on modern membrane roofs.

IceStop System

Ice dams can also form on and around roof drains preventing water from properly draining which can result in water damage. Window condensation can result in a build up of mold/mildew, causing health hazards and potential damage to the delicate artifacts, like those found in libraries and museums. Our systems help you protect roof drains and windows.

RIM DRAINTRACE

nVent RAYCHEM RIM-DrainTrace (RIM-DT) is a complete solution to trace roof drains. It includes IceStop heating cable, connection kits and pre-cut RIM panels for a fast, reliable, and elegant system to keep your roof drain free of snow and ice.



RIM-DrainTrace

WINDOW MULLION HEATING

nVent RAYCHEM Window Mullion Heating (WMH) is a complete heating solution designed to be installed in window frames. The system utilizes high wattage self-regulating cable installed in an engineered aluminum tray assembly offering efficient, high performance heat that keeps your windows free of frost and moisture.

Window Mullion Heating

Protect Surfaces

Unprotected surfaces

ElectroMelt System

ElectroMelt System

MI System

MI System

When snow and ice accumulates on outdoor concrete and asphalt surfaces, they can become slippery, unusable, and unsafe for people and vehicles.

Proven, reliable, and efficient, our snow melting systems keep sidewalks, stairways, driveways, parking garage ramps, loading docks, store entryways, and other areas free of snow and ice during even the worst weather conditions.

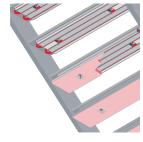
SURFACE SNOW MELTING - ELECTROMELT

The nVent RAYCHEM ElectroMelt system for concrete surfaces incorporates a rugged cut-to-length self-regulating heating cable that reduces heat output automatically as the pavement warms. It is ideal as an off-the-shelf solution and for smaller areas.

SURFACE SNOW MELTING - MI

The nVent RAYCHEM MI system for concrete, asphalt, and pavers, incorporates a rugged copper mineral insulated cable protected by a low smoke zero halogen (LSZH) outer jacket that provides constant power output. It offers higher voltages, high output, and 3-phase power, making it ideal for large areas.

When snow and ice accumulates on paved or suspended surfaces, like stairs, walkways and catwalks, they become unsafe for people. Safety becomes even more of a concern when these unsafe conditions affect critical access areas such as evacuation routes, ADA accessibility, and so on. Our systems help you protect surfaces.

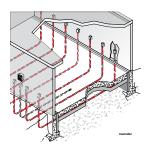

PEDESTAL MOUNTED HEATING

nVent RAYCHEM Pedestal Mounted Paver Heating (PMPH) is a complete snow melting solution designed to be installed under the pedestal mounted pavers. The system utilizes high wattage self-regulating cable installed in an engineered aluminum tray assembly offering efficient, high performance snow melting that keeps your pedestal mounted pavers free of snow and ice.

nVent RAYCHEM Suspension Mounted Heating (SMH) is a complete snow melting solution designed to be installed under suspended metal surfaces such as stairs, walkways and catwalks. The system utilizes high wattage self-regulating cable installed in an engineered aluminum tray assembly offering efficient, high performance snow melting that keeps your suspended surfaces free of snow and ice.

Suspension Mounted Heating

Pedestal Mounted Heating



Our Project Services team can assist you with cable layout design for your requirements.

Protect Freezers

Freezer frost heave example

RaySol System

Inside cold rooms and freezers, subfreezing temperatures cause heat to be lost from the soil under the floor. As the soil freezes, capillary action draws water into the frozen areas where the water forms a concentrated ice mass. As the ice mass grows, it heaves the freezer floor and columns, causing damage. Our freezer frost heave prevention systems can prevent this problem.

FREEZER FROST HEAVE PREVENTION - RAYSOL

nVent RAYCHEM RaySol cut-to-length self-regulating heating cables provide long circuit lengths, higher heat output, and are durable enough to be embedded in concrete, making it ideal to prevent heaving in soil under freezers, refrigerated warehouses, and cold rooms. RaySol is ideal for smaller areas.

FREEZER FROST HEAVE PREVENTION - MI

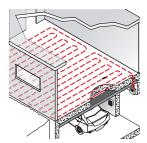
nVent RAYCHEM LSZH jacketed copper sheathed heating cables provide higher voltages, high output, 3-phase power, small profile, and are durable enough to be embedded in concrete, making it ideal in preventing heaving in soil under freezers, refrigerated warehouses, and cold rooms. MI is ideal for larger areas.

MI System

Replace Heat Loss

Floors over non-heated areas such as garages, or loading docks lose heat through the floor insulation over a cold space. Our heat loss solutions can prevent this problem.

HEAT LOSS REPLACEMENT - RAYSOL


RaySol cut-to-length self-regulating heating cables provide long circuit lengths, higher output, and are durable enough to be embedded in concrete, making it ideal to eliminate the chill felt from the heat lost through floors over non-heated areas such as skywalks, cantilevered roofs, garages, or loading docks. Also works as a radiant space heating solution. RaySol is ideal for smaller areas.

HEAT LOSS REPLACEMENT - MI

RAYCHEM LSZH jacketed copper sheathed heating cables provide higher voltages, high output, 3-phase power, small profile, and are durable enough to be embedded in concrete, making it ideal to eliminate the chill felt from the heat lost through floors over non-heated areas such as skywalks, cantilevered roofs, garages, or loading docks. Also works as a radiant space heating solution. MI is ideal for larger areas.

Heat loss replacement example

RaySol System

MI System

Enjoy The Comfort You Deserve

FLOOR HEATING

nVent NUHEAT electric floor heating systems are an ideal room-specific heat source option for both new construction or renovation projects. These easy-to-install systems can be used under tile, stone, laminate and engineered wood floors.

NVENT NUHEAT CUSTOM & STANDARD MAT SYSTEMS

Pre-built like an electric blanket, mats are available in standard sizes or can be custom built to precisely fit any room with curves or angles. It is the easiest and quickest system to install. Custom mats can be manufactured in 3 days. Standard mats are available in over 70 standard off-the-shelf square and rectangular sizes. Voltage: 120 V or 240 V

NVENT NUHEAT CABLE SYSTEM

Offering the ultimate in installation flexibility, the cable system is perfect where onsite adjustments are required. Coupled with newly redesigned cable guides and a low-profile cold lead, adding heated floors to your renovation or new construction project has never been easier. Over 30 kit sizes; largest 120 V covers 120 sq ft and largest 240 V covers 240 sq ft.

NVENT NUHEAT MEMBRANE

Membrane by Progress Profiles is a tile underlayment and uncoupling system that is specifically designed to embed and hold the industry-leading cable floor heating system. The low profile of the membrane reduces the stress caused by differential movement between the tile layer and the substrate which can lead to tile cracking. Flexible cable spacing and wattage output of 10, 12, or 15 watts per sq ft makes it suitable for comfort heating or primary heat source applications.

NVENT NUHEAT MESH SYSTEM

The mesh system consists of heating cable woven into an adhesive-backed fiberglass mesh with patented mesh bands to hold the heating cable in place. The modifiable solution is simple to roll-out and can be customized on the job site to fit any room shape. Standard off-the-shelf mesh available in 13 sizes for 120 V, and 19 sizes for 208/240 V.

nVent NUHEAT Electric Floor Heating Systems offer an entirely maintenance-free heating alternative—with no cold spots. Industry leading 25-year Total Care warranty applies. See nuheat.com for more information.

Enjoy Instant Hot Water

Conventional recirculation systems in large commercial buildings can lead to high energy costs and wasted water. nVent RAYCHEM's systems offer a smart alternative for meeting plumbing code that saves water and energy.

HOT WATER TEMPERATURE MAINTENANCE


nVent RAYCHEM's Hot Water Temperature Maintenance (HWAT) system is a better way to meet Plumbing Code that saves water, energy, and can be used in concert with, or instead of, conventional designs. It is a simple, smart performance alternative to complex recirculation systems.

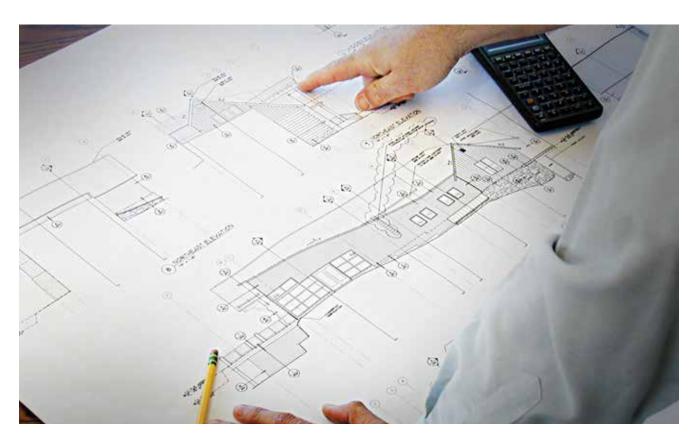
HWAT heating cables are attached to hot-water supply pipes to compensate for heat loss and maintain hot water temperature throughout the building, while eliminating the need for return piping and associated equipment.

This simplified design improves performance, reduces installation costs, and takes up less building space. More importantly, the HWAT system saves energy, water, and requires less maintenance which significantly reduces building operating costs. When properly installed and maintained, HWAT heating cables have a service life in excess of 40 years.

HWAT System

For HWAT design assistance, please refer to the Hot Water Temperature Maintenance Product Selection and Design Guide (H57538)

HWAT System for Hot Water Temperature Maintenance



HWAT System

Project Services

The nVent Project Services team of experts partner with you to address all types of projects, from **buildings** to complex **infrastructure**, to ensure optimized solutions to enhance safety, comfort and performance.

PROPOSALS & ESTIMATES

- Support architects, engineers, and contractors to develop Electric Heat Trace (EHT) scope, review EHT applications, and outline required engineering deliverables
- Provide detailed proposals for requested Scope of Work including Engineering, Products, Construction, and/or Field Support Services

PROJECT MANAGEMENT

- Manage heat trace projects for design, supply and/or installation services
- Manage materials—procurement, buy-outs, deliveries
 on site

ENGINEERING & DESIGN

- Create custom layout drawings for EHT applications
- On-site field engineering and design for heat trace applications
- Design custom heat trace systems with optimized performance

Beyond front end assistance of proposals, engineering and design, the Project Services team can be there every step of the way through contruction and installation, to commissioning and post installation services.

CONSTRUCTION / INSTALLATION

- Installation of heat trace products
- Installation of power distribution and control wiring
- On-site supervision of installation

FIELD SUPPORT SERVICES

- Commissioning & Start-up Assistance
- Troubleshooting & Repair
- Audits
- Training

CHOOSE PROJECT SERVICES TO...

- Provide CUSTOM SOLUTIONS to meet your needs
- Help you REDUCE RISK
- Be the SINGLE POINT OF CONTACT for your project needs
- Optimize the right system for your building or infrastructure.

Visit our web site at **nVent.com** or contact us at **1-800-545-6258**

Commercial Heating Products

SELF-REGULATING HEATING CABLES

nVent RAYCHEM self-regulating heating cables consist of two parallel conductors embedded in a conductive polymer heating core. The core is radiation-cross linked to ensure long-term reliability. The self-regulating heating cable automatically adjusts power output to compensate for temperature changes. Producing the 'right amount of heat' saves you money with no wasted energy.

SELF-REGULATING HEATING CABLES

XL-Trace Pipe Freeze Protection and Flow Maintenance

IceStop Roof and Gutter De-Icing

ElectroMelt Surface Snow Melting and Anti-Icing

RaySol Heat-Loss Replacement and Freezer Frost Heave Prevention

HWAT Hot Water Temperature Maintenance

CONNECTION KITS AND ACCESSORIES

nVent RAYCHEM power, splice, tee, end seal kits, and accessories are vital parts of the heat tracing system.

The RayClic connection kits have been designed and configured to be fully compatible with our XL-Trace, IceStop, and HWAT heating cables, and cuts installation time by 80%.

RayClic-PC Power Connection

RayClic-LE Lighted End Seal

GMK-RC Roof Clip

GM-RAKE Hanger Bracket

MINERAL INSULATED HEATING CABLES

nVent RAYCHEM mineral insulated heating cables consist of a single or dual conductor surrounded by magnesium oxide insulation, a solid copper sheath, and an extruded LSZH jacket. The mineral insulated series-type technology provides a reliable and constant heat source that is ideal for surface snow melting, anti-icing, floor heating, and freezer frost heave prevention.

COPPER MI HEATING CABLES

Roof & Gutter De-Icing, Heat Loss Replacement

LSZH JACKETED COPPER MI HEATING CABLES

Roof & Gutter De-Icing, Surface Snow Melting, Anti-Icing, Freezer Frost Heave Prevention

ALLOY 825 MI HEATING CABLES

Surface Snow Melting, Anti-Icing

Control & Monitoring Products Advanced controllers & power distribution

ADVANCED CONTROLLERS

Our microprocessor-based controllers provide accurate control and feedback for critical heat tracing applications, including freeze protection for sprinkler piping systems. nVent RAYCHEM HWAT-ECO and C910-485 are single-point controllers, whereas the nVent RAYCHEM ACS-30 is a multi-point control platform.

POWER DISTRIBUTION

nVent RAYCHEM dedicated HTPG and SMPG power-distribution panels reduce costly field wiring and controller costs. Available for heat tracing, surface snow melting, anti-icing, and roof and gutter de-icing applications. The HECS control system is specifically designed to work with RIM roof ice melt systems and can utilize multiple sensors to provide zone control for better energy efficiency.

HTPG

SMPG

HECS

SNOW CONTROLLERS & THERMOSTATS

SNOW CONTROLLERS AND SENSORS

ETI[®] snow controllers automatically energize snow melting, and roof and gutter de-icing systems when both precipitation and low temperature are detected. The controllers work with the aerial, pavement-mounted, and gutter snow sensors.

ELECTRONIC AND MECHANICAL THERMOSTATS

The nVent RAYCHEM EC-TS and ECW-GF are ambient or line sensing thermostats and provide accurate temperature control for pipe freeze protection and flow maintenance applications. They can control a single heat tracing circuit or as a pilot control of a contactor switching multiple heat tracing circuits.

Our mechanical thermostats, like the nVent RAYCHEM AMC-F5 or AMC-1A, provide simple on/off control for pipe freeze protection applications. They can control a single heat tracing circuit or as a pilot control of a contactor switching multiple heat tracing circuits.

FLOOR HEATING THERMOSTATS

Our floor heating thermostats are suitable for all nVent NUHEAT floor heating systems and include built-in GFCI protection:

Signature (WiFi-enabled programmable touchscreen) Works with Nest

Home (programmable touchscreen)

Element (non-programmable)

Controller Application Matrix

				GENERAL APPLICATIONS								
		Least Des								\rightarrow	Most Des	
Application	Pipe Freeze Protection	Element	Home	Signature	AMC-F5	AMC1A	AMC1B	EC-TS	ECW-GF	HTPG	C910-485	5 ACS-30
	•				•	•	~	~	~	•	~	~
	Pipe Flow Maintenance Fire Mains, Sprinkler						V	V	V		v v	~
	Lines										·	•
	Roof & Gutter - IceStop							~	~			~
olica	Roof & Gutter - RIM											
App	Surface Snow Melting									v		~
	Freezer Frost Heave/ Heat Loss								~	~	~	~
	Floor Heating - Nuheat	~	~	~								
	Domestic Hot Water											~
	120 V	1	1	1	1	1	1	1	1	54	1	5+
cuits	208 V	1	1	1	1	1	1	1	1	26	1	5+
# of Circuits	240 V	1	1	1	1	1	1	1	1	20	1	5+
# of	277 V				1	1	1	1	1	26	1	5+
	480 V											5+
	Minimum Setpoint	50°F	50°F	50°F	40°F	15°F	25°F	30°F	32°F		0°F	
	Maximum Setpoint	104°F	104°F	104°F	40°F	140°F	325°F	110°F	200°F		200°F	
	Power Distribution	45	45	45				~~		 		
	Max Amps/Circuit	15	15	15	22	22	22	30	30	50	30	30
	30 mA GFPD Hold On Timer (hours)	1hr to	1hr to	1hr to					~		~	~
			indefinite									
σ	Ambient Temp	~	~	~		v				~	~	~
สัง	-	v	•	v	~	V	~	~	~	V		
Base	Line Temp	V	•	•	v	v	~	v v	v v	V	v	V
ols Based on	-					V				v v		V V
ontrols Base on	Line Temp Moisture Proporational (PASC)					V		~	v			•
Controls Base	Line Temp Moisture Proporational (PASC) Sensor Length (feet)	15	15	15		0					✓ ✓ 0-4500	✓ ✓ 0-4500
Controls Base	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD				~		v	~	v	~	 	v v
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1				~		v	~	v	V	✓ ✓ 0-4500	✓ ✓ 0-4500
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1				~		v	~	v	V V V	✓ ✓ 0-4500	✓ ✓ 0-4500
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E				~		v	~	v	V	✓ ✓ 0-4500	✓ ✓ 0-4500
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1				~		v	~	v	v v v v	✓ 0-4500 ✓	✓ ✓ 0-4500 ✓
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors				~		v	25	25	2 2 2 2 2	✓ 0-4500 ✓	✓ ✓ 0-4500 ✓
	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External				~		v	25	2 5	2 2 2 2 2	✓ 0-4500 ✓	✓ ✓ 0-4500 ✓
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts				~		v	25	2 5	2 2 2 2 2	✓ 0-4500 ✓ ✓ 2	✓ ✓ 0-4500 ✓
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay				~		v	25	 ✓ 25 1 ✓ 	v v v v v 1	✓ 0-4500 ✓ ✓ 2 ✓ ✓	✓ ✓ ✓ ✓ ✓ 5+
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart				~		v	25	 ✓ 25 1 ✓ 	v v v v v 1	✓ 0-4500 ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ 0-4500 ✓ ✓ 5+ ✓
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage				~		v	25	25 1 1	v v v v v 1	 ✓ ✓<	✓ ✓ 0-4500 ✓ ✓ 5+ ✓ ✓
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power)				~		v	25	25 1 1	v v v v v 1	 -4500 -4500 - -<td>・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・</td>	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Additional Sensor Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp				~		v	25	25 1 1	v v v v v 1	 ✓ ✓<	· · · · · · · · · · · · · ·
BMS Additional Sensor Tie-In Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp	15	15	15	~		v	25	25 1 1	v v v v v 1	 ✓ ✓<	 ✓ ✓<
BMS Additional Sensor Tie-In Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp GF Monitoring	15	15	15	~		v	25	25 1 2 25	✓ ✓ ✓ I Optional	 ✓ ✓<	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
sor Contro	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp GF Monitoring GF Trip	15	15	15	~		v	25	 ✓ 25 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	v v v v v 1	 ✓ ✓<	 ✓ ✓<
BMS Additional Sensor Tie-In Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp GF Monitoring GF Trip Hi Amp Draw	15	15	15	~		v	25	25 1 2 25	✓ ✓ ✓ I Optional	 ✓ ✓<	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
BMS Additional Sensor Tie-In Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp GF Monitoring GF Trip Hi Amp Draw Low Amp Draw	15 •	15 •	15 •	~		v	25	25 1 V	✓ ✓ ✓ I Optional	 ✓ ✓<	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
BMS Additional Sensor Tie-In Input Req'd	Line Temp Moisture Proporational (PASC) Sensor Length (feet) RTD CIT-1 GIT-1 SIT-6E External Max # Sensors Optional Remote Control Contacts AC relay Smart High Voltage Low Volage (Loss of Power) Low Temp High Temp GF Monitoring GF Trip Hi Amp Draw	15	15	15	~		v	25	25 1 2 25	✓ ✓ ✓ I Optional	 ✓ ✓<	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

		HOT WATER									
		APP	SNOW N		APPLICATIONS						
				esirable	A DO 20			4.00 40		Most D	
	Pipe Freeze Protection	HWAT-ECO	LCD-8	ASD	APS-3C	PD-PRO	GF-PRO	APS-4C	SC-40	HECS	SMPG
	-										
	Pipe Flow Maintenance										
	Fire Mains, Sprinkler Lines										
u	Roof & Gutter - IceStop		~		V	~	v	v	~		~
catio	Roof & Gutter - RIM		•	~	•	•	•	•	•	~	
Application							~	~			
Ź	Surface Snow Melting Freezer Frost Heave/		~		~	~	V	V	~		~
	Heat Loss										
	Floor Heating - Nuheat										
	Domestic Hot Water	v									
	120 V	•	1	4 or 8	1	1	1			18	
3	208 V	1	1	4 or 8	1	1	1	1	1	18	18
	240 V 277 V	1	1	4 or 8	1	1	1	1	1	18	10
-	277 V 480 V			4 or 8 4 or 8		1	I	3 1	3 1	18 18	18 9
	480 V Minimum Setpoint	105°F	38°F	-150°F	38°F	38°F	38°F	1 38°F	1	-150°F	9
	Maximum Setpoint	140°F	38°F	150°F	38°F	38°F	38°F	38°F		150°F	
	Power Distribution				'		/	·		v	~
	Max Amps/Circuit	24	16	30	24	30	30	40	40	40	50
	30 mA GFPD						~	~	v	v	~
	Hold On Timer (hours)		0-5		0-10	0-8	0-8	0-10	0-10		0-10
	Ambient Temp		v	~	~	v	~	~	v	v	~
5	Line Temp										
5	Moisture		~		~	~	~	~	~		~
i D	Proporational (PASC)		-		-	-	-	-	-		-
	Sensor Length (feet)	13-328		15						15	
5											
5	RTD			~						~	
5	CIT-1				~	~	~	~			~
5	GIT-1				~	~	~	~			~
_	SIT-6E	Outional			✔ Outienel	~	~	✓ Outienel	400.40		✓ Outions
	External Max # Sanaara	Optional		1	Optional 6	2	2	Optional 6	APS-40	2	Optiona 6
2	Max # Sensors			I						2	
	Optional Remote Control				RCU-3	RCU-3	RCU-4	RCU-4			RCU-3
-	Contacts										
2	AC relay	v									
	Smart										
	High Voltage										
	Low Volage (Loss of Power)	~									
	Low Temp	v									
2	High Temp	 									
	GF Monitoring										
	GF Trip						~	~	~	~	Optiona
	Hi Amp Draw										
	Low Amp Draw	v									
	Sensor Failure	 									~
	Auto-Cycle										

Designer's Toolbox

VISIT NVENT.COM

Our website provides all the latest tools and information you need to design, select, and purchase a complete system for any commercial heating application. Browse and find the most up-to-date product brochures, data sheets, design guides and installation instructions.

Use our web-based design programs to help with your projects.

DESIGN TOOLS

RAYCHEM nvent Trace-It

BIMobject, **BIM & TRACE-IT**

BIMobject is a search engine that enables architects, engineers, and other design professionals to quickly discover, preview, and download our BIM files and product specifications for use in CAD Systems. For more information, visit https://bimobject.com, and search on nVent.

Trace-It is a software BIMobject add-in that allows users to design nVent RAYCHEM heat trace within their Revit model. To download Trace-It, go to http://apps. auotdesk.com, and type in Trace-It.

ACS-30 Program Integrator

The ACS-30 Program Integrator is a utility used on Microsoft Windows PCs that allows the user to easily set up circuit databasesproviding invaluable help for commissioning the heating cable control system.

TraceCalc For Buildings

TraceCalc Pro For Buildings is an intuitive, easy-touse, online design tool that lets users create simple or complex heattracing designs for pipe freeze protection and flow maintenance applications. Projects can have multiple applications, circuits, and pipe segments.

Once users enter parameters, the system generates a complete bill of material with the appropriate heating cables, circuit lengths, power requirements, connection kits and accessories-which can be used to request a quote online.

Roof & Gutter Calculator

Roof & Gutter Calculator is an on-line, easy-to-use design tool that lets users enter design parameters for a roof & gutter de-icing project.

Once users enter parameters, the system generates a complete bill of material with the appropriate heating cables, circuit lengths, power requirements, connection kits and accessories-which can be used to request a quote online.

Visit our web site at

nVent.com

or contact us at

1-800-545-6258.

SnoCalc

SnoCalc is an on-line, easy-to-use design tool that lets users enter design parameters for a surface snow melting project.

Once users enter parameters, the system generates a complete bill of material with the appropriate heating cables, circuit lengths, power requirements, connection kits and accessories—which can be used to request a quote online.

Before You Specify or Buy, Weigh The Facts

nVent offers the most complete line of heating technologies and services.

As the inventors of nVent RAYCHEM heat tracing products, with more than **1.75 billion feet** installed worldwide, we are the preferred brand by engineers and installers for all applications. Whether you need **products**, **design tools**, or **project assistance from our Project Services experts**, rely on the proven heating solutions leader for optimized systems to enhance the safety, comfort, and performance of your building or infrastructure projects.

Pipe Freeze Protection

Flow Maintenance

Roof & Gutter De-Icing

Freezer Frost Heave Prevention

Floor Heating

Hot Water Temperature Maintenance

Project Services

DESIGN GUIDES

This section provides individual design guides for nVent Commercial Heating products. These design guides are also available in .pdf format on our web site at nVent.com

CONTENTS

PIPE FREEZE PROTECTION AND FLOW MAINTENANCE – XL-TRACE SYSTEM
FIRE SPRINKLER SYSTEM FREEZE PROTECTION – XL-TRACE SYSTEM
ROOF ICE MELT SYSTEM – RIM SYSTEM
ROOF AND GUTTER DE-ICING – ICESTOP SYSTEM
SURFACE SNOW MELTING – MI MINERAL INSULATED HEATING CABLE SYSTEM
SURFACE SNOW MELTING AND ANTI-ICING - ELECTROMELT SYSTEM
FREEZER FROST HEAVE PREVENTION – RAYSOL AND MI HEATING CABLE SYSTEMS211
HEAT LOSS REPLACEMENT – RAYSOL AND MI HEATING CABLE SYSTEMS
HOT WATER TEMPERATURE MAINTENANCE – HWAT SYSTEM

HWAT

PIPE FREEZE PROTECTION AND FLOW MAINTENANCE - XL-TRACE SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM XL-Trace pipe freeze protection or flow maintenance system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	3
How to Use this Guide	4
Safety Guidelines	
Warranty	5
SYSTEM OVERVIEW	5
XL-Trace Applications	
Self-Regulating Heating Cable Construction	6
PIPE FREEZE PROTECTION APPLICATIONS	7
Typical Pipe Freeze Protection System	7
General Water Piping	8
FLOW MAINTENANCE APPLICATIONS	10
Typical Flow Maintenance System	
Grease Waste Lines	
Fuel Lines	
PIPE FREEZE PROTECTION AND FLOW	
MAINTENANCE DESIGN	14
Design Step by Step	14
Step 1 Determine design conditions and pipe heat loss	14
Step 2 Select the heating cable	19
Step 3 Determine the heating cable length	22
Step 4 Determine the electrical parameters	24
Step 5 Select the connection kits and accessories	
Step 6 Select the control system	33
Step 7 Select the power distribution	35

INTRODUCTION

This design guide presents nVent' recommendation for designing an XL-Trace pipe freeze protection and flow maintenance system for the following applications:

- · Freeze protection of general water piping (aboveground and buried)
- · Flow maintenance of waste lines (aboveground and buried)
- · Flow maintenance of fuel lines (aboveground)

This guide does **not** cover applications in which any of the following conditions exist:

- Hazardous locations, as defined in the national electrical codes
- Pipe temperature other than specified in Table 1 on page 5
- Pipe maintenance temperatures above 150°F (65°C)
- Supply voltage other than 120 V or 208–277 V

please refer to the XL-Trace System for Fire Sprinkler Freeze Protection Design Guide (H58489).

If your application conditions are different, or if you have any questions, contact your nVent representative or call (800) 545-6258.

This design guide presents nVent recommendations for designing an XL-Trace pipe freeze protection or flow maintenance system. It provides design and performance data, electrical sizing information, and application configuration suggestions. Following these recommendations will result in a reliable, energy-efficient system.

Other Required Documents

This guide is not intended to provide comprehensive installation instructions. For complete XL-Trace pipe freeze protection and flow maintenance system installation instructions, please refer to the following additional required documents:

- XL-Trace System Installation and Operation Manual (H58033)
- · Additional installation instructions are included with the connection kits, thermostats, controllers, and accessories

If you do not have these documents, you can obtain them from the nVent web site at nVent.com.

For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system connection kits could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

This symbol identifies particularly important safety warnings that must be followed.

MARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

How to Use this Guide

Safety Guidelines

An extension of the limited warranty period to ten (10) years from the date of installation is available if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

nVent standard limited warranty applies to all products.

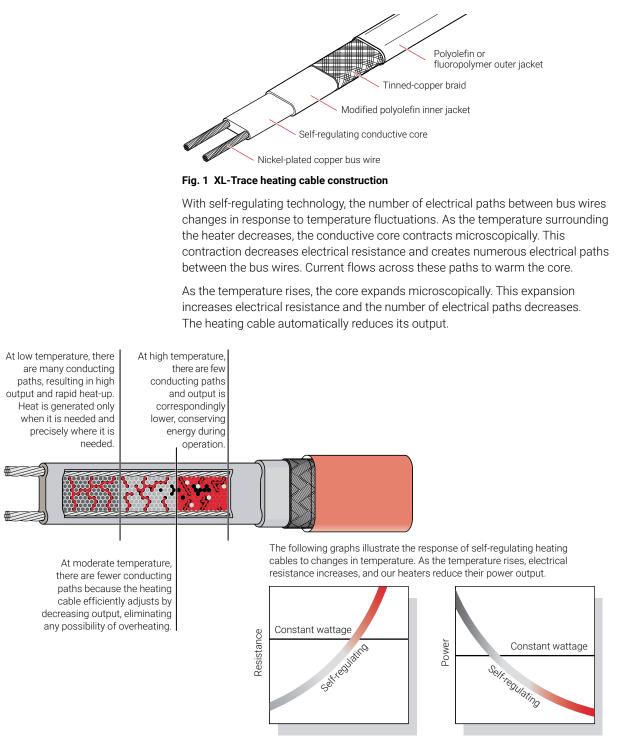
SYSTEM OVERVIEW

The XL-Trace system provides freeze protection and flow maintenance for aboveground and buried pipe applications. The XL-Trace system is based on self-regulating heating cable technology. nVent offers the option of three self-regulating heating cables with the XL-Trace system: 5XL, 8XL, and 12XL (208–277 V only) for applications using 120 and 208–277 V power supplies. The cable's output is reduced automatically as the pipe warms, so there is no possibility of failure due to overheating.

An XL-Trace system includes the heating cable, power connection, splice, tee connections, controls, contactors, power distribution panels, accessories, and the tools necessary for a complete installation.

XL-Trace Applications

Identify which of the standard XL-Trace applications below pertain to your installation. Proceed to the appropriate design sections that follow.


TABLE 1 XL-TRACE APPLICATIONS

Application	Description	Specific application requirements
Pipe freeze pro	otection	
General water piping	Freeze protection (40°F [4°C] minimum) of insulated, metal or plastic water piping	"Aboveground piping" on Page 8 "Buried piping," page 9
Flow maintena	nce	
Grease waste lines	Flow maintenance (110°F [43°C] minimum) for insulated grease waste lines	"Aboveground piping" on Page 11 "Buried piping," page 12
Fuel lines	Flow maintenance (40°F [4°C] minimum) for insulated metal piping containing #2 fuel oil	"For aboveground piping only," on Page 8

Note: If your application does not fit these guidelines, contact your local nVent representative or call (800) 545-6258.

Self-Regulating Heating Cable Construction

RAYCHEM XL-Trace self-regulating heating cables are comprised of two parallel nickel-plated bus wires in a cross-linked polymer core, a tinned copper braid, and a fluoropolymer or polyolefin outer jacket. These cables are cut to length, simplifying the application design and installation.

Temperature

Temperature

Fig. 2 Self-regulating heating cable technology

PIPE FREEZE PROTECTION APPLICATIONS

A pipe freeze protection system is designed to maintain the pipe temperature at a minimum of 40° F (4°C) to prevent freezing.

Typical Pipe Freeze Protection System

A typical pipe freeze protection system includes the XL-Trace self-regulating heating cables, connection kits, ambient temperature control, and power distribution.

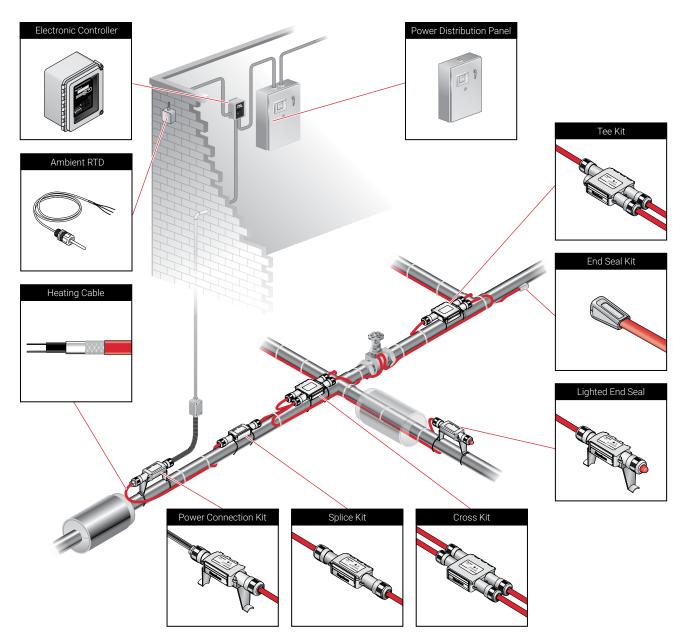
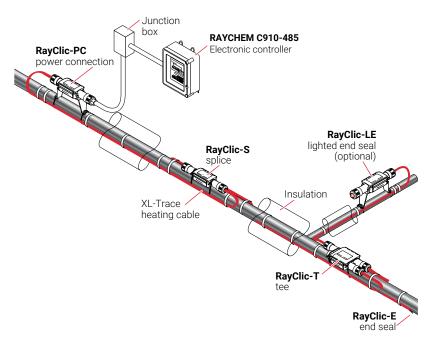



Fig. 3 Typical XL-Trace pipe freeze protection system

General Water Piping

General water piping is defined as metal or plastic water piping located in nonhazardous locations.

ABOVEGROUND PIPING

Fig. 4 Typical aboveground piping system

Application Requirements

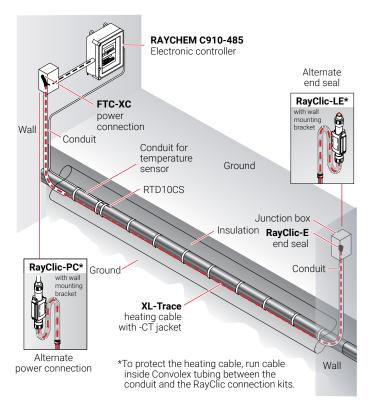
The system complies with nVent requirements for aboveground general water piping when:

- The heating cable is permanently secured to insulated metal pipes with GT-66 glass tape, or to plastic pipes using AT-180 aluminum tape.
- A 30-mA ground-fault protection device (GFPD) is used.
- The heating cable is installed per manufacturer's instructions with approved RAYCHEM connection kits. See Table 13 on page 29 and the XL-Trace System Installation and Operation Manual (H58033).

Cable Selection

See "Other Required Documents" page 15.

Approvals


UL Listed, FM Approved, and c-CSA-us Certified for nonhazardous locations.

5XL1-CR, -CT 8XL1-CR, -CT 5XL2-CR, -CT 8XL2-CR, -CT 5XL1-CR, -CT 8XL1-CR, -CT 12XL2-CR, -CT 5XL2-CR, -CT 8XL2-CR, -CT

BURIED PIPING

Fig. 5 Typical buried piping system

Application Requirements

The system complies with nVent requirements for use on buried insulated metal or plastic pipe when:

- The heating cable is permanently secured to metal pipes with GT-66 glass tape or to plastic pipes using AT-180 aluminum tape.
- The pipeline is buried at least 2-feet deep.
- All heating cable connections (power, splice, tee, and end termination) are made above-ground. No buried or in-conduit splices or tees are allowed.
- · The heating cable has a fluoropolymer outer jacket (-CT).
- The power connection and end seal are made in UL Listed and CSA Certified junction boxes above grade.
- The heating cable is protected from the pipe to the power connection box in UL Listed and CSA Certified water-sealed conduit (minimum 3/4-inch diameter) suitable for the location.
- · A 30-mA ground-fault protection device (GFPD) is used.
- Closed-cell, waterproof thermal insulation with fire-retardant, waterproof covering is used.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 15 on page 31 and the XL-Trace System Installation and Operation Manual (H58033).

Cable Selection

See "Pipe Heat Loss Calculations" page 15.

Approvals

UL Listed, FM Approved, and c-CSA-us Certified for nonhazardous locations.

FLOW MAINTENANCE APPLICATIONS

A flow maintenance system is designed to maintain cooking grease waste lines and #2 fuel oil lines above the temperature at which the viscosity inhibits fluid flow.

Typical Flow Maintenance System

A typical flow maintenance system includes the XL-Trace self-regulating heating cables with a fluoropolymer outer jacket, connection kits, line-sensing temperature control and power distribution.

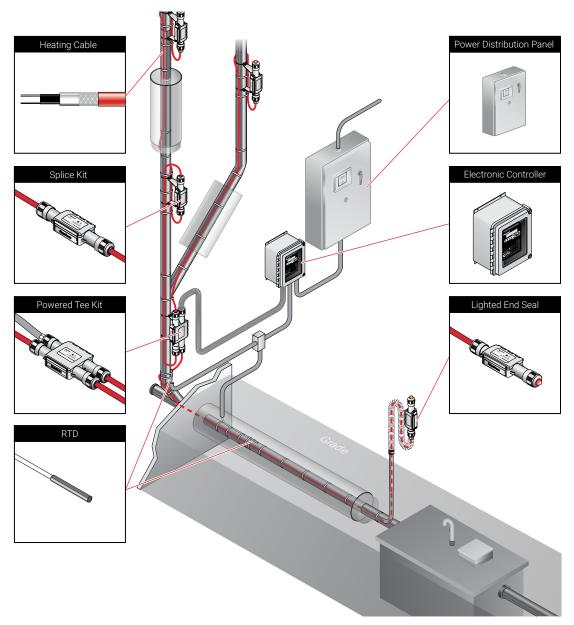
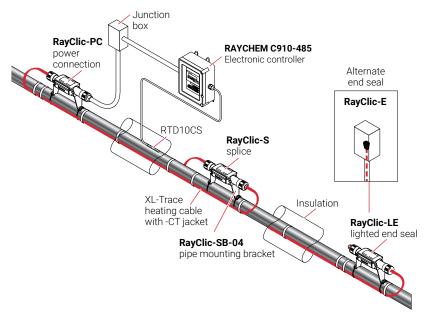



Fig. 6 Typical XL-Trace flow maintenance system

Grease waste lines are defined as piping used for the disposal of waste oils and fats created in the cooking process. Typical applications include grease waste lines from commercial restaurants. A grease-line flow maintenance system is designed to maintain a 110°F (43°C) minimum fluid temperature.

Aboveground piping

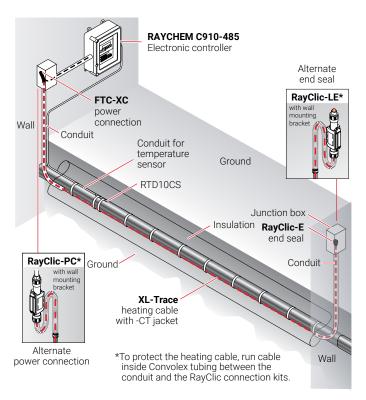
Fig. 7 Typical aboveground piping system

Application Requirements

The system complies with nVent requirements for aboveground grease waste lines when:

- The heating cable is permanently secured to metal pipes with GT-66 glass tape, or to plastic pipes using AT-180 aluminum tape.
- The heating cable must have a fluoropolymer outer jacket (-CT).
- A 30-mA ground-fault protection device (GFPD) is used.
- Tees and splices are installed using pipe mounting brackets, not in direct contact with piping.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 13 on page 29 and the XL-Trace System Installation and Operation Manual (H58033).

Cable Selection


See "Pipe Heat Loss Calculations" page 15.

Approvals

XL-Trace systems (-CT only) are UL Listed, FM Approved, and c-CSA-us Certified for nonhazardous locations.

BURIED PIPING

Application Requirements

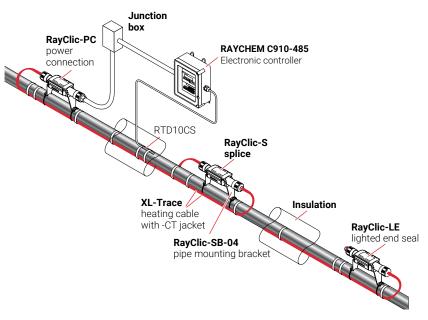
The system complies with nVent requirements for buried grease waste lines when:

- The heating cable is permanently secured to metal pipes with GT-66 glass tape, or to plastic pipes using AT-180 aluminum tape.
- The heating cable must have a fluoropolymer outer jacket (-CT).
- · The pipeline is buried at least 2-feet deep.
- All heating cable splices or tees are made aboveground. No buried or in-conduit splices or tees are allowed.
- The power connection and end seal are made in UL Listed and CSA Certified junction boxes above grade.
- The heating cable is protected from the pipe to the power connection box in UL Listed and CSA Certified conduit (minimum 3/4-inch diameter) suitable for the location.
- · A 30-mA ground-fault protection device (GFPD) is used.
- Closed-cell, waterproof thermal insulation with fire-retardant, waterproof covering is used.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 15 on page 31 and the XL-Trace System Installation and Operation Manual (H58033).

Cable Selection

See "Heating Cable Catalog Number" on page 19.

Approvals


XL-Trace systems (-CT only) are UL Listed, FM Approved, and c-CSA-us Certified for nonhazardous locations.

12XL2-CT

Fuel lines are defined as those carrying #2 fuel oil. A fuel line flow maintenance system is designed to maintain a 40°F (4°C) minimum fluid temperature to maintain flow.

FOR ABOVEGROUND PIPING ONLY

Fig. 9 Typical aboveground piping system

Application Requirements

The system complies with nVent requirements for aboveground #2 fuel oil piping when:

- The heating cable is permanently secured to metal pipes with GT-66 glass tape or to plastic pipes using AT-180 aluminum tape.
- The heating cable must have a fluoropolymer outer jacket (-CT).
- Tees and splices are installed using pipe mounting brackets, not in direct contact with piping.
- A 30-mA ground-fault protection device (GFPD) is used.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 13 on page 29 and the XL-Trace System Installation and Operation Manual (H58033).

Cable Selection

See "Pipe Heat Loss Calculations" page 15.

Approvals

XL-Trace systems (-CT only) are UL Listed, FM Approved, and c-CSA-us Certified for nonhazardous locations.

PIPE FREEZE PROTECTION AND FLOW MAINTENANCE DESIGN

TraceCalc Pro

This section details the design steps necessary to design your application. The examples provided in each step are intended to incrementally illustrate the project parameter output for two sample designs from start to finish. As you go through each step, use the "XL-Trace System Pipe Freeze Protection and Flow Maintenance Design Worksheet" page 38, to document your project parameters, so that by the end of this section you will have the information you need for your Bill of Materials.

TraceCalc Pro for Buildings is an online design tool available to help you create simple or complex heat-tracing designs for pipe freeze protection or flow maintenance applications. It is available at nVent.com.

Design Step by Step

Your system design requires the following essential steps.

- Determine design conditions and pipe heat loss
- **2** Select the heating cable
- 3 Determine the heating cable length
- 4 Determine the electrical parameters
- 5 Select the connection kits and accessories
- 6 Select the control system
- **7** Select the power distribution
- 8 Complete the Bill of Materials

Step 🖬 Determine design conditions and pipe heat loss

Collect the following information to determine your design conditions:

- XL-Trace application (from Table 1))
- Location
- Indoors
- Outdoors
- Aboveground
- Buried
- Maintain temperature (T_{M})
- Maximum system temperature (T_{MAX})
- Minimum ambient temperature (T_A)
- · Pipe diameter and material
- Pipe length

1 - - - +: - --

- Thermal insulation type and thickness
- Supply voltage

Example: Pipe Freeze Protection - Water Piping

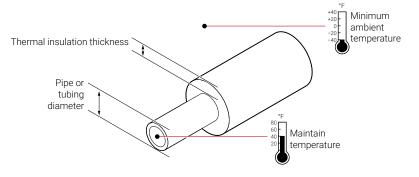
Location	Aboveground, outdoor
Maintain temperature (T_{M})	40°F (4°C)
Maximum system temperature (T_{MAX})	80°F (27°C)
Minimum ambient temperature (T_A)	-20°F (-29°C)
Pipe diameter and material	2-inch plastic
Pipe length	300 ft (91 m)
Thermal insulation type and thickness	1-inch fiberglass
Supply voltage	120 V

A I.

. . . .

 and Flow Maintenance
 Determine design conditions and pipe heat loss
 Select the heating cable
 Determine the heating cable length
 Determine the electrical parameters

Pipe Freeze Protection


- 5. Select the connection kits and accessories
- 6. Select the control system
- 7. Select the power distribution
- 8. Complete the Bill of Materials

Example: Pipe Freeze Protection – Grease Waste Line

Location	Buried
Maintain temperature (T_{M})	110°F (43°C)
Maximum system temperature (T_{MAX})	125°F (52°C)
Minimum ambient temperature (T_A)	50°F (10°C) (soil temperature)
Pipe diameter and material	4-inch metal
Pipe length	200 ft (61 m)
Thermal insulation type and thickness	1-inch rigid cellular urethane
Supply voltage	208 V

Pipe Heat Loss Calculations

To select the proper heating cable you must first determine the pipe heat loss. To do this you must first calculate the temperature differential (ΔT) between the pipe maintain temperature and the minimum ambient temperature.

Fig. 10 Pipe heat loss

Calculate temperature differential ΔT

To calculate the temperature differential (ΔT), use the formula below: ΔT = $T_{_{\rm M}}$ – $T_{_{\rm A}}$

Example: Pipe Freeze Protection - Water Piping

 T_M 40°F (4°C)

 T_A -20°F (-29°C)

 $\Delta T = 40°F - (-20°F) = 60°F$
 $\Delta T = 4°C - (-29°F) = 33°C$

Example: Flow Maintenance - Grease Waste Line

 T_{M} 110°F (43°C)

 T_{A} 50°F (10°C)

 $\Delta T = 110°F - (50°F) = 60°F$
 $\Delta T = 43°C - (10°C) = 33°C$

Determine the pipe heat loss

Match the pipe size, insulation thickness, and temperature differential (ΔT) from Table 2 to determine the base heat loss of the pipe (Q_B).

Example: Pipe Freeze Protection - Water Piping

Pipe diameter	2 inch
Insulation thickness	1 inch
ΔΤ	60°F (33°C)

Heat loss (Q_B) for 60°F must be calculated through interpolation between ΔT at 50°F and ΔT at 100°F from . For difference between the ΔT of 50°F and the ΔT of 100°F:

Q _{B-50}	3.2 W/ft (from)
Q _{B-100}	6.8 W/ft (from)
ΔT interpolation	ΔT 60°F is 20% of the distance between ΔT 50°F and ΔT 100°F
Q _{B-60}	$Q_{B}-50 + [0.20 \times (Q_{B}-100 - Q_{B}-50)] = 3.2 + [0.20 \times (6.8 - 3.2)] =$
	3.9 W/ft

Pipe heat loss (Q_{B)} 3.9 W/ft @ Tm 40°F (12.9 W/m @ Tm 4°C)

Example: Flow Maintenance – Grease Waste Line

Pipe diameter	4 inch
Insulation thickness	1 inch
ΔΤ	60°F (33°C)

 $Q_{\scriptscriptstyle B}$ for 60°F must be calculated through interpolation between ΔT at 50°F and ΔT at 100°F from . For difference between the ΔT of 50°F and the ΔT of 100°F:

Q _{B-50}	5.4 W/ft (from)
Q _{B-100}	11.2 W/ft (from)
ΔT interpolation	ΔT 60°F is 20% of the distance between ΔT 50°F and ΔT 100°F
Q _{B-60}	$Q_{B}-50 + [0.20 \times (Q_{B}-100 - Q_{B}-50)] = 5.4 + [0.20 \times (11.2 - 5.4)] = 6.6 W/ft$
Pipe heat loss $Q_{\scriptscriptstyle B}$	6.6 W/ft @ Tm 110°F (21.5 W/m @Tm 43°C)

Compensate for insulation type and pipe location

The base heat loss is calculated for a pipe insulated with thermal insulation with a k-factor ranging from 0.2 to 0.3 BTU/hr–°F-ft²/in (fiberglass or foamed elastomer) in an outdoor, or buried application. To get the heat loss for pipes insulated with alternate types of thermal insulation and for pipes installed indoors, multiply the base heat loss of the pipe (Q_B) from Step 3 by the insulation multiple from and the indoor multiple from Table 3 to get the corrected heat loss:

 $Q_{CORRECTED} = Q_B x$ Insulation multiple x Indoor multiple

Example: Pipe Freeze Protection – Water Piping

Location	Aboveground, outdoor
Thermal insulation thickness and type	1-inch fiberglass
Pipe heat loss Q₅	3.9 W/ft @ T _м 40°F (12.9 W/m @ T _м 4°C)
Q _{corrected}	3.9 W/ft x 1.00 x 1.00 = 3.9 W/ft @ Tm 40°F
	(12.9 W/m @ Tm 4°C)

Example: Flow Maintenance – Grease Waste Line

Location	Buried
Thermal insulation type and thickness	1-inch rigid cellular urethane
Pipe heat loss Q_B =	6.6 W/ft @ T _м 110°F (21.5 W/m @ T _м 43°C)
Q _{corrected} =	6.6 W/ft x 0.6 x 1.00 = 4.0 W/ft @ Tm 110°F
	(13.1 W/m @ Tm 43°C)

Insulation		(ΔT)				Pine (liameter (I	PS) in incl	195		
thickness (in)	°F	°C	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	3-1/2
0.5	20	11	1.0	1.2	1.4	1.6	1.8	2.2	2.5	3.0	3.4
	50	28	2.5	2.9	3.5	4.1	4.6	5.5	6.5	7.7	8.6
	100	56	5.2	6.1	7.2	8.6	9.6	11.5	13.5	16.0	18.0
	150	83	8.1	9.5	11.2	13.4	14.9	17.9	21.1	25.0	28.1
1.0	20	11	0.6	0.7	0.8	1.0	1.1	1.3	1.5	1.7	1.9
	50	28	1.6	1.9	2.2	2.5	2.8	3.2	3.8	4.4	4.9
	100	56	3.4	3.9	4.5	5.2	5.8	6.8	7.8	9.1	10.2
	150	83	5.3	6.1	7.0	8.2	9.0	10.6	12.2	14.2	15.9
1.5	20	11	0.5	0.6	0.7	0.8	0.8	1.0	1.1	1.3	1.4
	50	28	1.3	1.5	1.7	1.9	2.1	2.4	2.8	3.2	3.6
	100	56	2.8	3.1	3.5	4.0	4.4	5.1	5.8	6.7	7.4
	150	83	4.3	4.8	5.5	6.3	6.9	8.0	9.1	10.5	11.6
2.0	20	11	0.5	0.5	0.6	0.6	0.7	0.8	0.9	1.0	1.1
	50	28	1.1	1.3	1.4	1.6	1.8	2.0	2.3	2.6	2.9
	100	56	2.4	2.7	3.0	3.4	3.7	4.2	4.8	5.5	6.0
	150	83	3.7	4.2	4.7	5.3	5.8	6.6	7.5	8.5	9.4
2.5	20	11	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.9	1.0
	50	28	1.0	1.2	1.3	1.4	1.6	1.8	2.0	2.3	2.5
	100	56	2.2	2.4	2.7	3.0	3.3	3.7	4.2	4.7	5.2
	150	83	3.4	3.7	4.2	4.7	5.1	5.8	6.5	7.4	8.1
3.0	20	11	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.9
	50	28	1.0	1.1	1.2	1.3	1.4	1.6	1.8	2.0	2.2
	100	56	2.0	2.2	2.4	2.7	2.9	3.3	3.7	4.2	4.6
	150	83	3.1	3.4	3.8	4.3	4.6	5.2	5.8	6.6	7.1
4.0	20	11	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.7	0.7
	50	28	0.9	0.9	1.0	1.1	1.2	1.4	1.5	1.7	1.8
	100	56	1.8	2.0	2.1	2.4	2.5	2.9	3.2	3.5	3.8
	150	83	2.8	3.0	3.4	3.7	4.0	4.4	4.9	5.5	6.0

TABLE 2 PIPE HEAT LOSS (Q_B) FOR OUTDOOR OR BURIED PIPE (W/FT) FOR 1/2 TO 3-1/2 INCHES

Note: Multiply the W/ft heat loss values by 3.28 for W/m.

Insulation				Pipe diameter (IPS) in inches							
thickness (in)	°F	°C	4	6	8	10	12	14	16	18	20
0.5	20	11	3.8	5.3	6.8	8.4	9.9	10.8	12.2	13.7	15.2
	50	28	9.6	13.6	17.4	21.4	25.2	27.5	31.3	35.0	38.8
	100	56	20.0	28.4	36.3	44.6	52.5	57.4	65.2	73.0	80.8
	150	83	31.2	44.3	56.6	69.6	81.9	89.5	101.7	113.8	126.0
1.0	20	11	2.1	2.9	3.7	4.5	5.3	5.8	6.5	7.3	8.0
	50	28	5.4	7.5	9.4	11.5	13.5	14.7	16.6	18.6	20.5
	100	56	11.2	15.6	19.7	24.0	28.1	30.6	34.7	38.7	42.8
	150	83	17.5	24.3	30.7	37.4	43.8	47.8	54.1	60.4	66.7
1.5	20	11	1.5	2.1	2.6	3.2	3.7	4.0	4.5	5.0	5.5
	50	28	3.9	5.3	6.7	8.1	9.4	10.2	11.5	12.9	14.2
	100	56	8.1	11.1	13.9	16.8	19.6	21.3	24.0	26.8	29.5
	150	83	12.7	17.3	21.6	26.2	30.5	33.2	37.5	41.8	46.1
2.0	20	11	1.2	1.7	2.1	2.5	2.9	3.1	3.5	3.9	4.3
	50	28	3.1	4.2	5.2	6.3	7.3	7.9	8.9	9.9	10.9
	100	56	6.6	8.8	10.9	13.1	15.2	16.5	18.6	20.7	22.8
	150	83	10.2	13.8	17.0	20.5	23.8	25.8	29.0	32.3	35.5
2.5	20	11	1.1	1.4	1.7	2.1	2.4	2.6	2.9	3.2	3.5
	50	28	2.7	3.6	4.4	5.2	6.1	6.6	7.4	8.2	9.0
	100	56	5.6	7.4	9.1	10.9	12.6	13.7	15.3	17.0	18.7
	150	83	8.7	11.6	14.2	17.0	19.7	21.3	23.9	26.5	29.1
3.0	20	11	0.9	1.2	1.5	1.8	2.0	2.2	2.5	2.7	3.0
	50	28	2.4	3.1	3.8	4.5	5.2	5.6	6.3	7.0	7.6
	100	56	4.9	6.5	7.9	9.4	10.8	11.7	13.1	14.5	15.9
	150	83	7.7	10.1	12.4	14.7	16.9	18.3	20.5	22.6	24.8
4.0	20	11	0.8	1.0	1.2	1.4	1.6	1.7	1.9	2.1	2.3
	50	28	2.0	2.5	3.1	3.6	4.1	4.4	5.0	5.5	6.0
	100	56	4.1	5.3	6.4	7.5	8.6	9.3	10.3	11.4	12.4
	150	83	6.4	8.3	10.0	11.8	13.4	14.5	16.1	17.8	19.4

TABLE 1.2 CONTINUED PIPE HEAT LOSS (Q₈) FOR OUTDOOR OR BURIED PIPE (W/FT) FOR 4 TO 20 INCHES

Note: Multiply the W/ft heat loss values by 3.28 for W/m.

TABLE 3 INDOOR PIPE HEAT LOSS MULTIPLES

Fiberglass thickness (in)	Indoor multiple	
0.5	0.79	
1	0.88	
1.5	0.91	
2	0.93	
2.5	0.94	
3	0.95	
4	0.97	

TABLE 4 INSULATION HEAT LOSS MULTIPLES

k factor at 50°F (10°C) (BTU/hr−°F-ft²/in)	Insulation multiple	Examples of preformed pipe insulation
0.1-0.2	0.6	Rigid cellular urethane (ASTM C591)
0.2-0.3	1.0	Glass fiber (ASTM C547) Foamed elastomer (ASTM C534)
0.3-0.4	1.4	Cellular glass (ASTM C552) Mineral fiber blanket (ASTM C553)

Pipe Freeze Protection and Flow Maintenance


2.	Determine design conditions and pipe heat loss Select the heating cable Determine the heating cable length
	cable Determine the
0	
3.	
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Select the power distribution
8.	Complete the Bill of Materials

Step 2 Select the heating cable

To select the appropriate XL-Trace heating cable for your application, you must determine your cable supply voltage, power output, and outer jacket. Once you select these, you will be able to determine the catalog number for your cable.

Heating Cable Catalog Number

Before beginning, take a moment to understand the structure underlying heating cable catalog numbers. You will refer to this numbering convention throughout the product selection process. Your goal is to determine the catalog number for the product that best suits your needs.

Fluoropolymer (required for buried pipes, grease and fuel lines) -

Fig. 11 Heating cable catalog number

Select the heating cable from Fig. 12 that provides the required power output to match the corrected heat loss for your application. Fig. 12 shows the power output for the heating cables on metal pipe at 120/208 volts. To correct the power output for other applied voltage or plastic pipes multiply the power output at the desired maintain temperature by the factors listed in . If the pipe heat loss, $Q_{\text{CORRECTED}}$, is between the two heating cable power output curves, select the higher-rated heating cable.

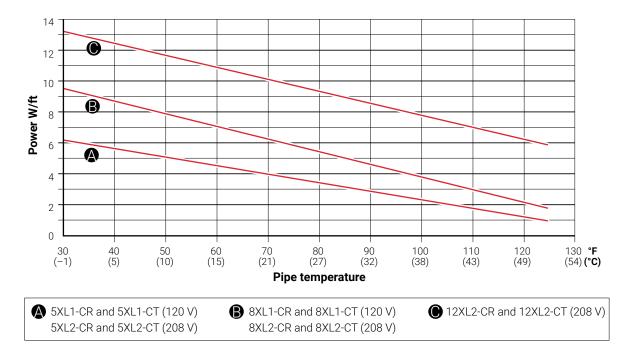


Fig. 12 Heating cable power output on metal pipe

TABLE 5 POWER OUTPUT CORRECTION FACTORS

Voltage correction factors	5XL1	8XL1	5XL2	8XL2	12XL2
120 V	1.00	1.00	_	_	_
208 V	-	-	1.00	1.00	1.00
240 V	-	-	1.12	1.12	1.14
277 V	-	-	1.29	1.27	1.30
Plastic pipe correction facto (With AT-180 Aluminum tape)		0.75	0.75	0.75	0.75

Confirm that the corrected power output of the heating cable selected is greater than the corrected pipe heat loss ($Q_{\text{CORRECTED}}$). If $Q_{\text{CORRECTED}}$ is greater than the power output of the highest-rated heating cable, you can:

- Use two or more heating cables run in parallel
- Use thicker insulation to reduce heat loss
- · Use insulation material with a lower k factor to reduce heat loss

Example: Pipe Freeze Protection – Water Piping

Pipe maintain temperature (T_{M})	40°F (4°C) (from Step 1)
Q _{corrected}	$Q_{\text{CORRECTED}}$ = 3.9 W/ft @ T _M 40°F
	(13.1 W/m @ T _м 4°C)
Supply voltage	120 V (from Step 1)
Pipe material	Plastic (from Step 1)
Select heating cable:	$Q_{\scriptscriptstyle B}$ = 3.9 W/ft @ $T_{\scriptscriptstyle M}$ 40°F (from Step 1)
	5XL1= 5.6 W/ft @ 40°F (from Fig. 12)
Supply voltage correction factor	1.00 (from Table 5)
Pipe material correction factor	Plastic = 0.75 (from Table 5)
Corrected heating cable power	5.6 W/ft x 1.00 x 0.75 = 4.2 W/ft
Selected heating cable	5XL1

Example: Flow Maintenance - Grease Waste Line

Pipe maintain temperature ($T_{\scriptscriptstyle M}$)	110°F (43°C) (from Step 1)
QCORRECTED	3.9 W/ft @ T _м 110°F (13.1 W/m @ T _м 43°C)
Supply voltage	208 V (from Step 1)
Pipe material	Metal (from Step 1)
Select heating cable:	$Q_{\scriptscriptstyle B}$ = 3.9 W/ft @ $T_{\scriptscriptstyle M}$ 110°F (from Step 1)
	12XL2= 7.0 W/ft @110°F (from Fig. 12)
Supply voltage correction factor	1.00 (from Table 5)
Pipe material correction factor	Metal = 1.00
Corrected heating cable power	7.0 x 1.00 x 1.00 = 7.0 W/ft
Selected heating cable	12XL2

Confirm exposure temperature rating for the heating cable

Refer to to verify that the maximum system temperature does not exceed the exposure temperature of the selected heating cable.

TABLE 6 HEATING CABLE TEMPERATURE RATINGS

	5XL1	5XL2	8XL1	8XL2	12XL2
Maximum maintain temperature $(T_{\scriptscriptstyle M})$			150°F (65°C)		
Maximum exposure temperature (T $_{\scriptscriptstyle EXP})$			150°F (65°C)		

Example: Pipe Freeze Protection – Water Piping

	105% (50%) (frame Otam 1)		
Example: Flow Maintenance - Grease Waste Line			
$T_{\text{max}} < T_{\text{exp}}$	Yes		
Maximum heating cable exposure temperature (T $_{\mbox{\tiny EXP}})$	150°F (65°C) (from Table 6)		
Selected heating cable	5XL1 (from previous step)		
Maximum system temperature ($T_{\text{\tiny MAX}}$)	80°F (27°C) (from Step 1)		

$T_{max} < T_{exp}$	Yes
Maximum heating cable exposure temperature (T $_{\mbox{\tiny EXP}})$	185°F (85°C)(from Table 6)
Selected heating cable	12XL2 (from previous step)
Maximum system temperature (I _{Max})	125°F (52°C) (from Step 1)

Select Outer Jacket

Select the appropriate heating cable outer jacket for the application. Jacket options are:

- -CR Compatible with most XL-Trace applications
- -CT Required for buried pipe freeze protection and for grease and fuel line flow maintenance; may be used in other XL-Trace applications for improved mechanical strength and chemical resistance.

Example: Pipe Freeze Protection - Water Piping

Selection: 5XL1-CR

Example: Flow Maintenance - Grease Waste Line

Selection: 12XL2-CT

Pipe Freeze Protection

	Flow Maintenance
1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Select the power distribution
8.	Complete the Bill of Materials

Step Determine the heating cable length

In Step 2 you selected the appropriate heating cable and the number of runs of heating cable required for the pipe. Multiply the length of the pipe by the number of heating cable runs for the heating cable length.

Heating cable length = Pipe length x No. heating cable runs

Additional heating cable will be required for heat sinks and connection kits. Use Table 7 and Table 8 to determine the additional footage required for heat sinks (valves, flanges, and pipe supports). You will determine the additional heating cable for connection kits in Step 5. Round up fractional lengths to ensure heating cable lengths are sufficient.

 Total heating cable = (Pipe length x No. +
 Additional heating cable

 length required
 heating cable runs)
 for heat sinks (valves, pipe supports, and flanges)

TABLE 7 ADDITIONAL HEATING CABLE FOR VALVES

Pipe diameter (IPS) (inches)	Heating ca	able (feet (meters))
1/2	0.8	(0.24)
3/4	1.3	(0.4)
1	2.0	(0.6)
1-1/4	3.3	(1.1)
1-1/2	4.3	(1.3)
2	4.3	(1.3)
3	4.3	(1.3)
4	4.3	(1.3)
6	5.0	(1.5)
8	5.0	(1.5)
10	5.6	(1.7)
12	5.9	(1.9)
14	7.3	(2.2)
18	9.4	(2.9)
20	10.5	(3.2)

TABLE 8ADDITIONAL HEATING CABLE FOR PIPE SUPPORTSAND FLANGES

Support	Additional cable
Pipe hangers (insulated)	No additional heating cable
Pipe hangers noninsulated and U-bolt supports	Add 2x pipe diameter
Welded support shoes	Add 3x the length of the shoe
Flanges	Add 2x pipe diameter

Note: For applications where more than one heating cable is required per foot of pipe, this correction factor applies for each cable run.

Example: Pipe Freeze Protection – Water Piping

Example: Pipe Freeze Protection –	Water Piping
Pipe length	300 ft (91 m) (from Step 1)
Pipe diameter	2-inch plastic (from Step 1)
Number of heating cable runs	1 (from Step 2)
Valves	3 gate valves
	4.3 ft x 3 gate valves = 12.9 ft (3.9 m)
Pipe supports	5 pipe hangers with U-bolts
	2-inch pipe diameter = 2 / 12 = 0.17 ft
	[0.17 ft pipe diameter x 2] x 5 pipe supports
	= 1.7 ft (0.5 m)
Flanges	0
Total heating cable for heat sinks	12.9 ft (3.9 m) + 1.7 ft (0.5 m) = 14.6 ft (4.4 m)
	Rounded up to 15 ft (5 m)
Total heating cable length required	300 ft (91 m) x 1 run + 15 ft =
	315 ft (96 m) of 5XL1-CR
	(Note: AT-180 Aluminum tape is required for installing heating cable on plastic pipe.)

Example: Flow Maintenance – Grease Waste Line

•	
Pipe length	200 ft (61 m) (from Step 1)
Pipe diameter	4-inch metal (from Step 1)
Number of heating cable runs	1 (from Step 2)
Valves	2 gate valves
	[4.3 ft x 2 gate valves] x 1 run = 8.6 ft (2.6 m)
Pipe supports	2 non-insulated hangers
	4-inch pipe diameter = 4 /12 = 0.33 ft
	[(0.33 ft pipe diameter x 2) x 2 pipe supports] x 1 run = 1.3 ft (0.4 m)
Flanges	2
	4-inch pipe diameter = 4 /12 = 0.33 ft
	[(2 x 0.33 ft (pipe diameter)) x 2 flanges] x 1 run
	= 1.3 ft (0.4 m)
Total heating cable for heat sinks	8.6 ft (2.6 m) + 1.3 ft (0.4 m) + 1.3 ft (0.4 m)
	= 11.2 ft (2.2 m)
	Rounded up to 12 ft (3 m)
Total heating cable length required	200 ft x 1 run + 12 ft =
	212 ft (65 m) of 12XL2-CT

Pipe Freeze Protection and Flow Maintenance								
1.	Determine design conditions and pipe heat loss							
2.	Select the heating cable							
3.	Determine the heating cable length							
4.	Determine the electrical parameters							
5.	Select the connection kits and accessories							
6.	Select the control system							
7.	Select the power distribution							
8.	Complete the Bill of Materials							

To determine the electrical requirements for your application, you must determine the number of circuits and calculate the transformer load.

Determine Number of Circuits

To determine the number of circuits, you need to know:

- · Total heating cable length
- Supply voltage
- Minimum start-up temperature

Use Table 9 to determine the maximum circuit length allowed. If the total heating cable length exceeds the maximum circuit length for the expected start-up temperature, more than one circuit will be required.

Number of circuits = Heating cable length required

Maximum heating cable circuit length

Important: Select the smallest appropriate ground-fault circuit breaker size.

🗥 WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

TABLE 9 MAXIMUM CIRCUIT LENGTH IN FEET

	40°F / 110°F Maintain*											
Start-up	СВ	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°F)	size (A)	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-20°F	15	101	76	174	178	183	131	138	146	111	114	117
	20	134	101	232	237	245	175	184	194	148	151	156
	30	201	151	349	356	367	262	276	291	223	227	234
	40	270	201	465	474	478	349	368	388	297	303	312
0°F	15	115	86	199	203	209	149	157	166	120	122	126
	20	153	115	265	271	279	199	209	221	160	163	168
	30	230	172	398	406	419	298	314	331	239	244	252
	40	270	210	470	490	530	370 <mark>/399</mark>	390/420	420/443	319	326	336
20°F	15	134	100	232	237	244	173	182	192	126	129	133
	20	178	133	309	315	325	231	243	257	169	172	177
	30	270	200	464	473	488	346	365	385	253	258	266
	40	270	210	470	490	530	370/462	390/ <mark>486</mark>	420/513	340/ <mark>349</mark>	344	355
40°F	15	160	119	278	283	292	206	217	229	142	145	150
	20	214	159	370	378	390	275	290	306	190	194	200
	30	270	210	470	490	530	370/416	390 <mark>/438</mark>	420/462	285	291	300
	40	270	210	470	490	530	370/554	390 <mark>/584</mark>	420 <mark>/616</mark>	340/398	360/406	380/419
50°F	15	-	-	-	-	-	228	240	254	152	155	160
(buried)	20	-	-	-	-	-	304	320	338	203	207	213
	30	-	-	-	-	-	457	481	507	304	310	320
	40	-	-	-	-	-	609	641	676	405	414	427
65°F	15	-	-	-	-	-	272	286	302	169	172	178
(indoors grease)	20	-	-	-	-	-	362	381	402	225	230	237
grease)	30	-	-	-	-	-	543	572	603	338	345	356
	40	-	-	-	-	-	610	660	720	430	460	490

*When maximum circuit length is listed in: • black type, the value is for applications with a 40°F maintain

• red type, the value is for applications with a 110°F maintain

							4°C / 4	3°C Maintai	n*			
Start-up	СВ	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°C)	size (A) 1	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-29°C	15	31	23	53	54	56	40	42	44	34	35	36
	20	41	31	71	72	75	53	56	59	45	46	48
	30	61	46	106	108	112	80	84	89	68	69	71
	40	82	61	142	145	149	106	112	118	90	92	95
-18°C	15	35	26	61	62	64	45	48	51	36	37	38
	20	47	35	81	83	85	61	64	67	49	50	51
	30	70	52	121	124	128	91	96	101	73	74	77
	40	82	64	143	149	162	113/122	119/128	128/135	97	99	102
−7°C	15	41	31	71	72	74	53	56	59	39	39	41
	20	54	41	94	96	99	70	74	78	51	52	54
	30	82	61	141	144	149	106	111	117	77	79	81
	40	82	64	143	149	162	113/141	119/148	128 <mark>/156</mark>	104/106	105	108
4°C	15	49	36	85	86	89	63	66	70	43	44	46
	20	65	48	113	115	119	84	88	93	58	59	61
	30	82	64	143	149	162	113/127	119/134	128 <mark>/141</mark>	87	89	91
	40	82	64	143	149	162	113/169	119/178	128/188	104/121	110/124	116/128
10°C	15	-	-	-	-	-	70	73	77	46	47	49
(buried	20	-	-	-	-	-	93	98	103	62	63	65
grease)	30	-	-	-	-	-	139	147	155	93	95	98
	40	-	-	-	-	-	186	195	206	124	126	130
18°C	15	-	-	-	-	_	83	87	92	52	53	54
(indoors	20	-	-	-	-	-	110	116	123	69	70	72
grease)	30	-	-	-	-	-	166	174	184	103	105	108
	40	-	-	-	-	-	186	201	220	131	140	149

TABLE 10 MAXIMUM CIRCUIT LENGTH IN METERS

* When maximum circuit length is listed in:

• black type, the value is for applications with a 4°C maintain

• red type, the value is for applications with a 43°C maintain

Example: Pipe Freeze Protection – Water Piping

Total heating cable length Supply voltage Minimum start-up temperature Number of circuits 315 ft of 5XL1-CR (from Step 3) 120 V (from Step 1) −20°F (−29°C) (from Step 1) 315 ft / (201 ft max CL) = 1.6 circuits **Round up to 2 circuits**

Example: Flow Maintenance - Grease Waste Line

Total heating cable length Supply voltage Minimum start-up temperature Number of circuits 223 ft of 12XL2-CT (from Step 3) 208 V (from Step 1) 50°F (10°C) (from Step 1) 223 ft / 304 ft = 0.7 circuits **Round up to 1 circuit**

DETERMINE TRANSFORMER LOAD

Transformers must be sized to handle the load of the heating cable. Use the following tables to calculate the total transformer load.

TABLE 11 TRANSFORMER SIZING (AMPERES/FOOT)

Minimum start-up	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°F)	120	120	208	240	277	208	240	277	208	240	277
-20	0.119	0.159	0.069	0.067	0.065	0.092	0.087	0.082	0.108	0.106	0.102
0	0.105	0.139	0.060	0.059	0.057	0.080	0.076	0.072	0.100	0.098	0.095
20	0.090	0.120	0.052	0.051	0.049	0.069	0.066	0.062	0.095	0.093	0.090
40	0.075	0.101	0.043	0.042	0.041	0.058	0.055	0.052	0.084	0.083	0.080
50	-	-	-	_	_	0.053	0.050	0.047	0.079	0.077	0.075
65	-	-	-	-	-	0.044	0.042	0.040	0.072	0.070	0.067

TABLE 12 TRANSFORMER SIZING (AMPERES/METER)

Minimum start-up	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°C)	120	120	208	240	277	208	240	277	208	240	277
-20	0.391	0.521	0.226	0.221	0.215	0.301	0.286	0.270	0.354	0.347	0.336
-18	0.343	0.457	0.198	0.194	0.188	0.264	0.251	0.238	0.329	0.322	0.312
-7	0.294	0.394	0.170	0.166	0.161	0.227	0.216	0.205	0.311	0.305	0.296
4	0.246	0.331	0.142	0.139	0.135	0.191	0.181	0.172	0.276	0.271	0.263
10	-	-	-	-	-	0.172	0.164	0.155	0.259	0.254	0.246
18	-	-	-	-	-	0.145	0.138	0.130	0.233	0.228	0.221

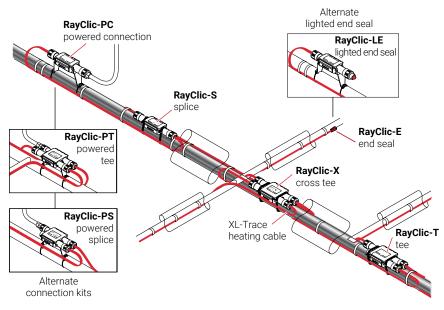
Use Table 11 or to determine the applied voltage and the maximum A/ft (A/m) at the minimum start up temperature to calculate the transformer load as follows:

Max A/ft at minimum start-up temperature x Heating cable length (ft) x Supply voltage = Transformer

100	0 load (kW)
Example: Pipe Freeze Protection	on – Water Piping
Total heating cable length	315 ft of 5XL1-CR (from Step 3)
Minimum start-up temperature	–20°F (–29°C) (from Step 1)
Circuit breaker sizing	30 A
Max A/ft at −20°F x Total feet x Supply voltage	— = (0.119 A/ft x 315 ft x 120 V) / 1000
1000	(0.119 A/IL X 3131L X 120 V) / 1000
Transformer load (kW)	= 4.5 kW

Example: Flow Maintenance – Grease Waste Line

Transformer load (kW)	= 3.5 kW
1000	- (0.079 A/IT × 212 IT × 200 V) / 1000
Max A/ft at 50°F x Total feet x Supply voltage	— = (0.079 A/ft x 212 ft x 208 V) / 1000
Minimum start-up temperature	50°F (10°C) (from Step 1)
Supply voltage	208 V
Total heating cable length	212 ft of 12XL2-CT (from Step 3)


Step 5 Select the connection kits and accessories

All XL-Trace systems require a power connection and end seal kit. Splice and tee kits are used as required. Use Table 13 on page 29 (for aboveground applications) and Table 15 on page 31 (for buried applications) to select the appropriate connection kits.

Note: Add extra cable on your Bill of Materials for power connections, tees, and end seals. See Table 13 on page 29, Table 15 on page 31, and Table 16 on page 32 for more information.

WARNING: Approvals and performance are based on the use of nVentspecified parts only. Do not substitute parts or use vinyl electrical tape.

ABOVEGROUND PIPING

Fig. 13 RayClic connection system

Use the following table for general piping, and grease waste and fuel lines. Develop a bill of materials from the connection kits listed in this table.

Note: Connection kits must be off the pipe when installed on grease waste, fuel oil, or pipes exceeding 150°F (65°C).

Pipe Freeze Protection and Flow Maintenance

1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
З.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Select the power distribution
8.	Complete the Bill of Materials

TABLE 13 CONNECTION KITS AND ACCESSORIES FOR ABOVEGROUND PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Connection kits					
	RayClic-PC	Power connection and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	2 ft (0.6 m)
	RayClic-PS	Powered splice and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	4 ft (1.2 m)
E Company	RayClic-PT	Powered tee and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	6 ft (1.8 m)
	FTC-P ²	Power connection and end seal kit Note: FTC-P is required for circuits requiring 40 A circuit breakers.	1	1 per circuit	2 ft (0.6 m)
	RayClic-S	Splice used to join two sections of heating cable	1	As required	2 ft (0.6 m)
	RayClic-T	Tee kit with end seal; use as needed for pipe branches	1	As required	2 ft (0.6 m)
	RayClic-X	Cross connection to connect four heating cables	1	As required	8 ft (2.4 m)
Jesse and a second s	FTC-HST ³	Low-profile splice/tee; use as needed for pipe branches	2	As required	3 ft (0.9 m)
A MARINE	RayClic-LE	Lighted end seal (RayClic-SB-04 pipe mounting bracket included)	1	Alternate end seal	2 ft (0.6 m)
	RayClic-E	Replacement end seal	1	Additional end seal	0.3 ft (0.1 m)

TABLE 13 CONNECTION KITS AND ACCESSORIES FOR ABOVEGROUND PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Accessories					
	RayClic-SB-04	Pipe mounting bracket. Required for mounting the kits off the pipe for exposure temperatures greater than 150°F (65°C) and for grease and fuel line splices and tees.	1	As required	-
	RayClic-SB-02	Wall mounting bracket	1	As required	-
No. 100	ETL	"Electric Traced" label (use 1 label per 10 feet of pipe)	1	1 label per 10 feet (3 m) of pipe	_
	GT-66	Glass cloth adhesive tape for attaching heating cable to pipe at 40°F (4°C) or above.	66 ft (20 m)	See "Table 14"	-
	GS-54	Glass cloth adhesive tape for attaching heating cable to pipe above -40°F (-40°C).	54 ft (20 m)	See "Table 14"	_
	AT-180	Aluminum tape. Required for attaching heating cable to plastic pipe (use 1 foot of tape per foot of heating cable).	180 ft (55 m)	1 ft/ft [0.3 m/m] of heating cable	-


¹ Allow extra heating cable for ease of component installation.

² Junction box not included.

³One RayClic-E end seal is required for each FTC-HST used as a tee kit.

TABLE 14 QUANTITY OF GLASS CLOTH ADHESIVE TAPE REQUIRED (ATTACH AT 1-FOOT INTERVALS)

Pipe size (in)	<2	3	4	6	8	10
Feet of pipe per GT-66 roll	60 (18 m)	50 (15 m)	40 (12 m)	25 (8 m)	20 (6 m)	15 (5 m)
Feet of pipe per GS-54 roll	49 (15 m)	41 (13 m)	33 (10 m)	20 (6 m)	16 (5 m)	12 (4 m)

Fig. 14 Typical buried piping system

Use the following for buried water piping and grease waste lines. Note that all connections must be aboveground and that no splices/tees are allowed. Develop a bill of materials from the connection kits in this table.

TABLE 15 CONNECTION KITS AND ACCESSORIES FOR BURIED PIPING

Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
RayClic-PC	Power connection and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	2 ft (0.6 m)
FTC-XC	The FTC-XC power connection and end seal kit is for use with XL-Trace heating cable that is run through conduit to a junction box. Materials for one power connection and end seal is included in the kit.	1	1 per circuit	2 ft (0.6 m)
	Note: FTC-XC is required for circuits requiring 40 A circuit breakers.			
RayClic-LE	Lighted end seal (RayClic-SB-04 pipe mounting bracket included)	1	Alternate end seal	2 ft (0.6 m)
RayClic-E	Replacement end seal	1	Additional end seal	0.3 ft (0.1 m)

TABLE 15 CONNECTION KITS AND ACCESSORIES FOR BURIED PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Accessories	RayClic-SB-04	Pipe mounting bracket	1	As required	_
	RayClic-SB-02	Wall mounting bracket	1	As required	-
No. Co	ETL	"Electric Traced" label (use 1 label per 10 feet of pipe)	1	1 label per 10 feet (3 m) of pipe	_
	GT-66	Glass cloth adhesive tape for attaching heating cable to pipe at 40°F (4°C) or above.	66 ft (20 m)	See Table 16	-
	GS-54	Glass cloth adhesive tape for attaching heating cable to pipe above -40° F (-40° C).	54 ft (20 m)	See Table 16	-
	AT-180	Aluminum tape. Required for attaching heating cable to plastic pipe (use 1 foot of tape per foot of heating cable).	180 ft (55 m)	1 ft/ft [0.3 m/m] of heating cable	-

¹ Allow extra heating cable for ease of component installation.

TABLE 16 QUANTITY OF GLASS CLOTH ADHESIVE TAPE REQUIRED (ATTACH AT 1-FOOT INTERVALS)

Pipe size (in)	<2	3	4	6	8	10
Feet of pipe per GT-66 roll	60 (18 m)	50 (15 m)	40 (12 m)	25 (8 m)	20 (6 m)	15 (5 m)
Feet of pipe per GS-54 roll	49 (15 m)	41 (13 m)	33 (10 m)	20 (6 m)	16 (5 m)	12 (4 m)

Pipe Freeze Protection and Flow Maintenance

an	a now maintenance
1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7	Calaat the new or

 Select the power distribution

8. Complete the Bill of Materials

Step 6 Select the control system

Temperature controls save energy by ensuring that the system is energized only when necessary. nVent offers a wide variety of monitoring and control options, including:

- Electronic thermostats provide higher accuracy of the heating cable circuit with thermistor sensors and built-in ground-fault protection.
- Electronic controllers provide superior accuracy with RTD temperature sensors, built-in ground-fault protection, monitoring and alarm output.
- Modbus® protocol communication over RS-485 system is supported using RAYCHEM ProtoNode multi-protocol gateways.

Note: Grease waste flow maintenance requires line sensing controllers such as the RAYCHEM ECW-GF, C910-485, or the ACS-30.

Use the following table to identify the control system suitable for your application. Contact your nVent representative or contact nVent directly at (800) 545-6258 for more information.

TABLE 17 TEMPERATURE CONTROL OPTIONS

	Electronic	Electronic co	ntrollers
	thermostat	Single-point	Multipoint
Application	ECW-GF	C910-485	ACS-30
Ambient sensing	Х	Х	х
Line sensing	Х	х	х
Buried pipe	Х	Х	х
Sensor	Thermistor	RTD*	RTD*
Sensor length	35 ft	multiple options	multiple options
Set point range	32°F to 200°F (0°C to 93°C)	−76°F to 1058°F (−60°C to 570°C)	u
Enclosure	NEMA 4X	NEMA 4X	п
Deadband	2°F to 10°F (2°C to 6°C)	3°F (1.6°C)	IJ
Enclosure limits	-40°F to 140°F (-40°C to 60°C)	-40°F to 140°F (-40°C to 60°C)	II
Switch rating	30 A	30 A	п
Switch type	DPST	DPST	п
Electrical rating	100-277 V	100-277 V	п
Approvals	c-UL-us	c-CSA-us	п
Ground-fault protection	30 mA fixed	20 mA to 250 mA	n
Alarm outputs			п
AC relay	2 A at 277 Vac	100–277 V, 0.75 A max.	u
Dry contact relay	2 A at 48 Vdc	48 Vac/dc, 500 mA max.	11

* not included with unit

TABLE 18CONTROL SYSTEMS

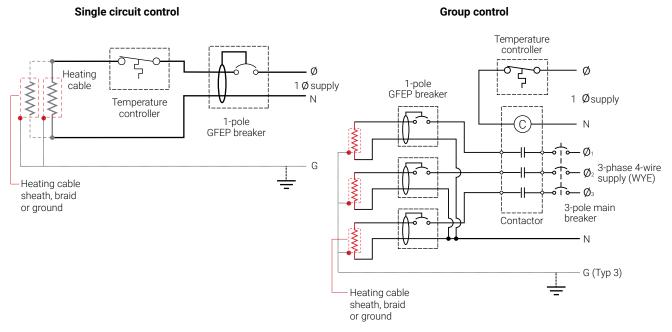
	Catalog number	Description
Electronic Thermostats	and Accessories	
	ECW-GF	The ECW-GF electronic controller provides accurate temperature control with integrated 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor for line, slab or ambient sensing temperature control, and is housed in a NEMA 4X rated enclosure. The controller features an AC/DC dry alarm contact relay.
e e	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
	FTC-PSK	The FTC-PSK pipe stand and power connection kit is for use with XL-Trace heating cables. The stand is designed specifically for the RAYCHEM ECW- GF electronic controllers and is compatible with other junction boxes that have 1 inch NPT entries, threaded or non-threaded. Materials for one power connection and end seal are included in the kit.
Electronic Controllers a	and Sensors	
	C910-485	The C910-485 is a compact, full-featured microprocessor-based single-point heat-trace controller. The C910-485 provides control and monitoring of electrical heat-tracing circuits for both freeze protection and temperature maintenance, and can be set to monitor and alarm for high and low temperature, high and low current, ground-fault level, and voltage. The RAYCHEM C910-485 controller is available with an electromechanical relay (EMR) for use in ordinary areas. The C910-485 comes with an RS-485 communication module.
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in commercial freeze protection and flow maintenance applications. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers. The ProtoNode-RER is for BACnet® or Metasys® N2 systems.
	RTD-200 RTD3CS RTD10CS RTD50CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers. RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing RTD3CS: temperature sensor with a 3-ft (0.9 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor,
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing

Pipe Freeze Protection / Flow Maintenance

	e Freeze Protection d Flow Maintenance
1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Select the power distribution
8.	Complete the Bill of Materials

tep 🖬 Select the power distribution

Once the heating cable circuits have been defined, you must select how to provide power to them. Power to the XL-Trace heating cables can be provided in several ways: directly through the temperature control, through external contactors, or through HTPG power distribution panels.


Single circuit control

Heating cable circuits that do not exceed the current rating of the selected temperature control device shown in Table 18 can be switched directly (see Fig. 15).

Group control

If the current draw exceeds the switch rating, or if the controller will activate more than one circuit (group control, an external contactor must be used (see Fig. 15 on page 35).

Large systems with many circuits should use an HTPG power distribution panel. The HTPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for freeze protection and broad temperature maintenance heat-tracing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with an ambient-sensing thermostat, individual electronic, or duty cycle controller.

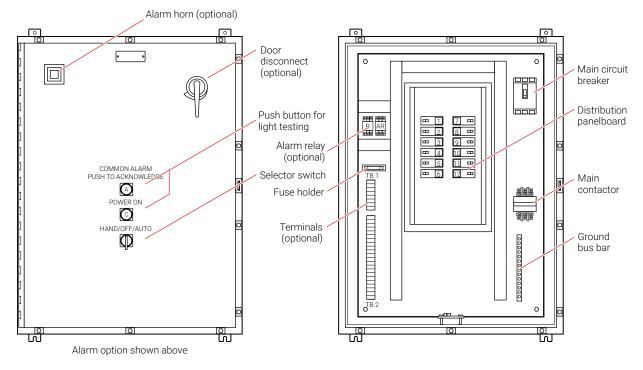
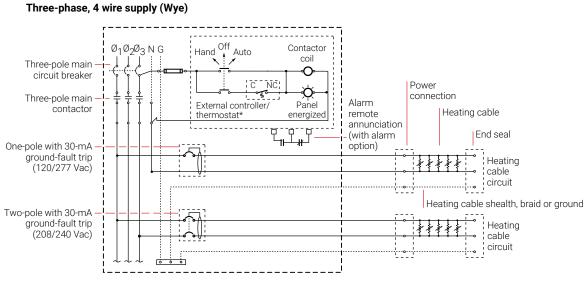
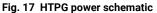




Fig. 16 HTPG power distribution panel

TABLE 19 POWER DISTRIBUTION

	Catalog number	Description
Power Distribution		
	HTPG	Heat-tracing power distribution panel with ground-fault and monitoring for group control.
Pipe Freeze Protection and Flow Maintenance	Step 🖪 Complete th	
1. Determine design conditions and pipe heat loss		If you used the Design Worksheet to document all your design parameters, you should have all the details necessary complete your Bill of Materials.
2. Select the heating cable		
3. Determine the heating cable length		
4. Determine the electrical parameters		
5. Select the connection kits and accessories		
6. Select the control system		
7. Select the power distribution		

XL-TRACE SYSTEM PIPE FREEZE PROTECTION AND FLOW MAINTENANCE DESIGN WORKSHEET

Step 🚹 Deterr	nine design (conditions and p	oipe heat l	oss						
Design condit	ions									
XL-Trace application	Location		Maintain temp. (T _M)	Max. system temp. (Т _{мах})	Min. ambient temp. (T _A)	Pipe dia and ma		Pipe length	Thermal insul type and thick	
Pipe freeze pro	tection				~					
U Water piping	IndoorsOutdoors	AbovegroundBuried				in	MetalPlastic	ft (m)	Fiberglass	in
Flow maintenan	ice									
Grease waste lines	IndoorsOutdoors	AbovegroundBuried				in	MetalPlastic	ft (m)	Fiberglass	in
Fuel lines	IndoorsOutdoors	AbovegroundBuried				in	MetalPlastic	ft (m)	Fiberglass	in
Example: VWater piping	✔ Abovegrou ✔ Outdoor	und	40°F	80°F	−20°F	2 in	✓ Plastic	300 ft	✔ Fiberglass	1 in
Pipe heat loss										
Calculate temp	erature differe	ntial ∆T								
Pipe maintain te	emperature (T _N	۸) ۴ (°C)	_							
Ambient tempe	erature (T _A)	°F (°C)	_							
T _M		T _A			→ ⁼ -		ΔΤ			
Example: Pipe	Freeze Protec	tion - Water Piping	9							
Pipe maintain t	emperature (T _N	л) <u>40 °F</u> °F	_ (from Ste	ep 1)						
Ambient tempe	erature (T _A)	<u>-20 °F</u> °F	_ (from Ste	ep 1)						
40 °F		20 °F			→ =	(50 °F			
Τ _M		T _A					ΔΤ			

Determine the pipe heat loss: See Table 2 for the base heat loss of the pipe (Q_B) . If the ΔT for your system is not listed, interpolate between the two closest values.

Q _{B-50} ΔT1	
	W/ft (W/m)
$Q_{B-100} \Delta T2$	
_	W/ft (W/m)
Q _B	
Pipe diameter	vv/it(vv/iii)
	in
Insulation thickness	
	in
ΔT	°F (°C)
Q _{B-50}	1 (0)
≪B-50	
Q _{B-50}	
	W/ft (W/m)

Example: Pipe Freeze Protection - Water Piping 2 in Pipe diameter 1 in Insulation thickness _ 60°F ΔΤ 3.2 W/ft Q_{B-50} 6.8 W/ft Q_{B-100} ΔT 60°F is 20% of the distance between ΔT 50°F and ΔT 100°F ΔT interpolation $Q_{B-50} + [0.20 \times (Q_{B-100} - Q_{B-50})]$ 3.2 + [0.20 x (6.8 - 3.2)] = 3.9 W/ft Q_{B-60} Pipe heat loss (Q_{B-60}) 3.9 W/ft @ T_M 40°F

Compensate for insulation type and pipe location

See Table 2 for the pipe heat loss (Q_B). If the ΔT for your system is not listed, interpolate between the two closest values. See Table 3 for indoor multiple

See Table 4 for insulation multiple

Location							
Insulation thickness and type							
Q _B							
Insulation multiple							
Indoor multiple (if applicable)							
	Q _B	x Insulation	n multiple	x — In (ndoor multiple (if applicable)	=	Q _{CORRECTED}
Example: Pipe Freeze Protection - V	Vater Piping						
Location	Aboveground, indo	or					
Thermal insulation thickness and type	1-in fiberglass						
Q _B	3.9 W/ft @ T _M 40°	F					
Insulation multiple	1.00						
Indoor multiple	N/A						
Q _{corrected} —	$\frac{3.9 \text{ W/ft}}{\text{Q}_{\text{B}}}$ x $\frac{1}{\text{H}}$	1.00 nsulation mu	Iltiple =	3.9 W/	/ft @ T _M 40°F		

Step 2 Select the heating cable

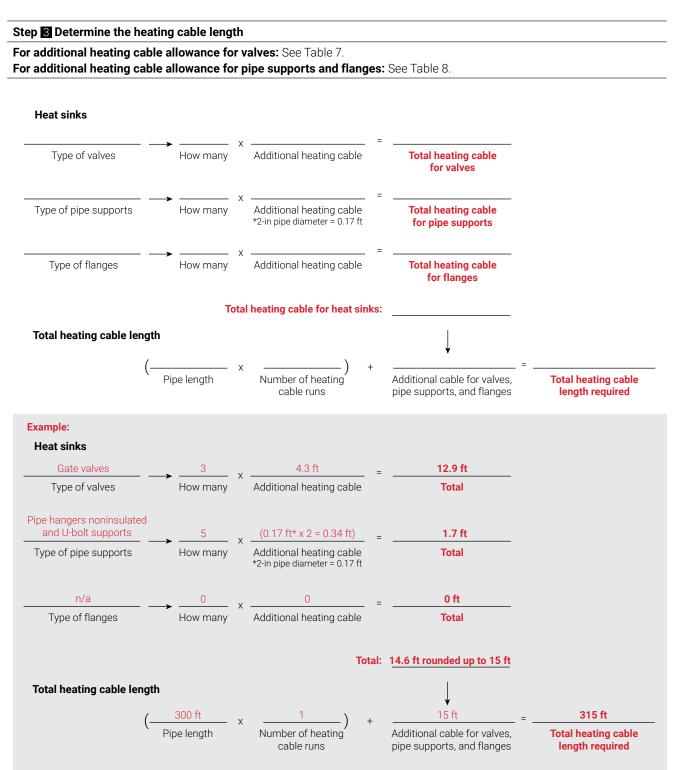
Power output data: See Fig. 12 Power output correction factors: See Table 5 Heating cable temperature ratings: See Table 6

Pipe maintain temperature (T _M)		(from Step 1)
Corrected heat loss (Q _{CORRECTED})		(from Step 1)
Supply voltage		(from Step 1)
Pipe material (metal or plastic)		(from Step 1)
XL-Trace application (water, fuel oil, or greasy waste) Pipe freeze protection: general water piping, sprinkler piping Flow maintenance: greasy waste lines, fuel lines		(from Step 1)
Maximum system use temperature (T_{MAX})		(from Step 1)
Heating cable selected		(from Step 1)
Power at T _M (120/208 V)		
Power output correction factor		(from Step 1)
Plastic pipe correction factor		
Power at rated V factor x — Plastic pipe correction factor =	Corrected power	-

Is the heating cable power output (P_{CORRECTED}) \geq the corrected heat loss? \Box Yes \Box No

If No, then design with additional runs of heating cable or thicker thermal insulation.

Example: Pipe Freeze Protection - Water Piping	
Maintain temperature (T _M)	40°F
Corrected heat loss (Q _{CORRECTED})	3.9 W/ft @ T _M 40°F
Supply voltage	120 V
Pipe material (metal or plastic*) (*AT-180 aluminum tape required for installing heating cable on plastic pipes)	plastic
$\label{eq:QB} \begin{split} & Q_B = 3.9 \; W/ft @ \;T_M \; 40^\circF \\ & Select \; curve \; C: \; 5XL1 = 5.6 \; W/ft @ \; 40^\circF \\ & Power \; output \; correction \; factor: \; 120 \; V = 1.00 \\ & Pipe \; material \; correction \; factor: \; Plastic = 0.75 \\ & Corrected \; heating \; cable \; power: \; 5.6 \; @/ft \; x \; 1.00 \\ & Select: \; \mathbf{5XL1} \\ & Maximum \; system \; temperature \; (T_MAX): \; 80^\circF \\ & Maximum \; heating \; cable \; exposure \; temperature \\ & T_MAX < T_EXP: \; Yes \end{split}$	


Select outer jacket

-CR

□ -CT

Example: Pipe Freeze Protection – Water Piping

5XL1-CR

Step 4 Determine the electrical parameters

Determine maximum circuit length and number of circuits

See Table 9 and Table 10.

Total heating cable le	ngth require	ed						
Supply voltage:	□ 120 V □ 240 V	□ 208 V □ 277 V						
Circuit breaker size:	□ 15 A □ 30 A	□ 20 A □ 40 A						
Minimum start-up ter	nperature							
Maximum circuit length								
 Total heating cable len	 gth required	/ Maximum heating cable circuit le	= ngth	Number of circuits				
Example:								
Total heating cable le	Total heating cable length required 315 ft of 5XL1-CR							
Supply voltage:	☑ 120 V □ 240 V							
Circuit breaker size:	□ 15 A ☑ 30 A							
Minimum start-up ter	mperature	-20°F						
Maximum circuit length201 ft								
315 ft		201 ft	=	1.6 circuits, round up to 2				
Total heating cable length required Maximum heating cable circuit length Number of circuits								

Determine transformer load

See Table 11 and Table 12

Max A/ft at minimum start-up temperature	х	Heating cable length	х	Supply voltage	/	1000	=	Transformer load (kW)
Example: 0.119 A/ft Max A/ft at minimum start-up temperature	x	315 ft Heating cable length	х	120 V Supply voltage	/	1000	=	4.5 kW Transformer load (kW)

Step 5 Select the connection kits and accessories

See Table 13

Connection kits – Aboveground	Description	Quantity	Heating cable allowance
RayClic-PC	Power connection and end seal		
RayClic-PS	Power splice and end seal		
RayClic-PT	Powered tee and end seal		
□ FTC-P	Power connection and end seal		
RayClic-S	Splice		
RayClic-T	Tee kit with end seal		
RayClic-X	Cross connection		
□ FTC-HST	Low-profile splice/tee		
□ FTC-PSK	Pipe stand and power connection kit		
RayClic-LE	Lighted end seal		
RayClic-E	Extra end seal		
Connection kits – Buried	Description	Quantity	Heating cable allowance
□ RayClic-PC	Power connection and end seal		
⊐ FTC-XC	Power splice and end seal		
❑ RayClic-LE	Lighted end seal		
RayClic-E	Extra end seal		
Accessories – Aboveground and buried	Description	Quantity	
□ RayClic-SB-04	Pipe mounting bracket		
□ RayClic-SB-02	Wall mounting bracket		
D ETL	"Electric-Traced" label		
❑ GT-66	Glass cloth adhesive tape		
❑ GS-54	Glass cloth adhesive tape		
❑ AT-180	Aluminum tape (for plastic pipes)		
			Total heating cable allowance for connection kits
 Total heatir	ng cable length Total heating cable allowance for co	nnection kits	Total heating cable length required

44 | nVent.com/RAYCHEM

Step Select the control system

See Table 18

Thermostats, controllers and accessories	Description	Quantity
□ ECW-GF	Electronic thermostat with 25-ft sensor	
ECW-GF-DP	Remote display panel for ECW-GF	
C 910-485	Microprocessor-based single-point heat-tracing controller	
ACS-UIT2	ACS-30 user interface terminal	
ACS-PCM2-5	ACS-30 power control panel	
ProtoNode-RER	Multi-protocol gateway	
RTD3CS	Resistance temperature device	
RTD10CS	Resistance temperature device	
□ RTD-200	Resistance temperature device	
RTD50CS	Resistance temperature device	

Step **Z** Select the power distribution

See Table 19		
Power distribution	Description	Quantity
□ HTPG	Heat-tracing power distribution panel for group contro	bl

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

FIRE SPRINKLER SYSTEM FREEZE PROTECTION — XL-TRACE SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM XL-Trace fire sprinkler freeze protection system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

ent

RAYCHEM

CONTENTS

INTRODUCTION	47
How to Use this Guide Safety Guidelines	
Warranty	
SYSTEM OVERVIEW	49
Approvals	
Self-Regulating Heating Cable Construction	
FIRE SUPPRESSION SYSTEM FREEZE PROTECTION APPLICATIONS	
Typical Pipe Freeze Protection System	
Fire Supply Lines	
Sprinkler Standpipes Branch Lines with Sprinklers	
Freezer Application	
FIRE SUPPRESSION SYSTEM FREEZE PROTECTION DESIGN	57
Design Step by Step	57
Step 1 Determine design conditions and pipe heat loss	
Step 2 Select the heating cable	63
Step 3 Determine the heating cable length	65
Step 4 Determine the electrical parameters	
Step 5 Select the connection kits and accessories	
Step 6 Select the control system	
Step 7 Complete the Bill of Materials	
INSTALLATION AND MAINTENANCE	77
XL-TRACE SYSTEM FIRE SPRINKLER SYSTEM	-
FREEZE PROTECTION DESIGN WORKSHEET	78

INTRODUCTION

This design guide presents nVent recommendations for designing an XL-Trace pipe freeze protection system for fire sprinkler piping. It provides design and performance data, control options, electrical sizing information, and application configuration suggestions. This guide does not give information on how to design your fire protection system.

This guide does **not** cover applications in which any of the following conditions exist:

- · Hazardous locations, as defined in national electrical codes
- Supply voltage other than 120 V or 208–277 V

If your application conditions are different, or if you have any questions, contact your nVent representative or call (800) 545-6258.

How to Use this Guide

Safety Guidelines

This design guide takes you step by step through designing a freeze protection system for fire suppression piping. Following these recommendations will result in a reliable, energy-efficient system.

OTHER REQUIRED DOCUMENTS

This guide is not intended to provide comprehensive installation instructions. For complete system installation instructions, please refer to the following additional required documents:

- XL-Trace System Installation and Operation Manual (H58033)
- · Additional installation instructions are included with the connection kits, controllers, and accessories

If you do not have the above documents, you can obtain them from the nVent web site at nVent.com.

For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system connection kits could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

This symbol identifies particularly important safety warnings that must be followed.

A WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Warranty

nVent standard limited warranty applies to all products.

An extension of the limited warranty period to ten (10) years from the date of installation is available if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

The XL-Trace system is designed to freeze protect aboveground and buried supply pipes, fire standpipes, branch lines and branch lines containing sprinklers when run in areas subject to freezing.

nVent offers the option of three self-regulating heating cables with the XL-Trace system; 5XL, 8XL, and 12XL for applications using 120 V and 208–277 V power supplies. The XL-Trace system is based on self-regulating heating cable technology whereby the heating cable's output is reduced automatically as the pipe warms; eliminating the possibility of sprinkler system overheating.

An XL-Trace system includes the heating cable, power connection, splice, tee connections, controls, power distribution panels, accessories, and the tools necessary for a complete installation.

Approvals

NFPA 13 (Standard for the Installation of Sprinkler Systems) allows Listed electrical heat tracing to freeze protect fire suppression systems including supply lines, standpipes and branch lines containing sprinklers. XL-Trace is c-CSA-us Certified for use on fire suppression systems under CSA C22.2 No. 130-03 for Canada and IEEE 515.1-2005 for the US. The system covered in this manual includes supply lines, stand pipes, branch lines and sprinkler heads.

Self-Regulating Heating Cable Construction

RAYCHEM XL-Trace self-regulating heating cables are comprised of two parallel nickel-plated bus wires in a cross-linked polymer core, a tinned copper braid, and a fluoropolymer or polyolefin outer jacket. These cables are cut to length, simplifying the application design and installation.

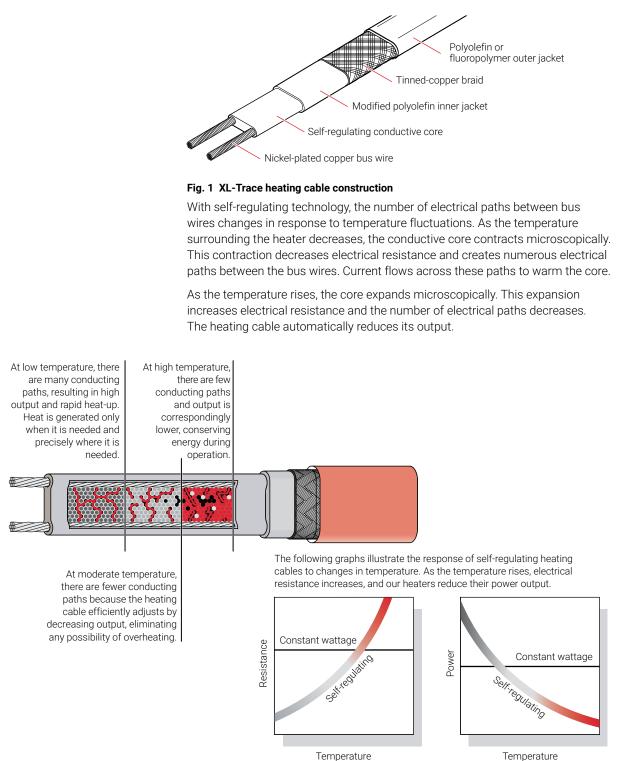


Fig. 2 Self-regulating heating cable technology

Temperature

FIRE SUPPRESSION SYSTEM FREEZE PROTECTION APPLICATIONS

A freeze protection system is designed to maintain water temperature at a minimum of $40^{\circ}F$ (4°C) to prevent fire suppression piping from freezing.

Typical Pipe Freeze Protection System

A typical freeze protection system includes the XL-Trace self-regulating heating cables, connection kits, temperature control, and power distribution.

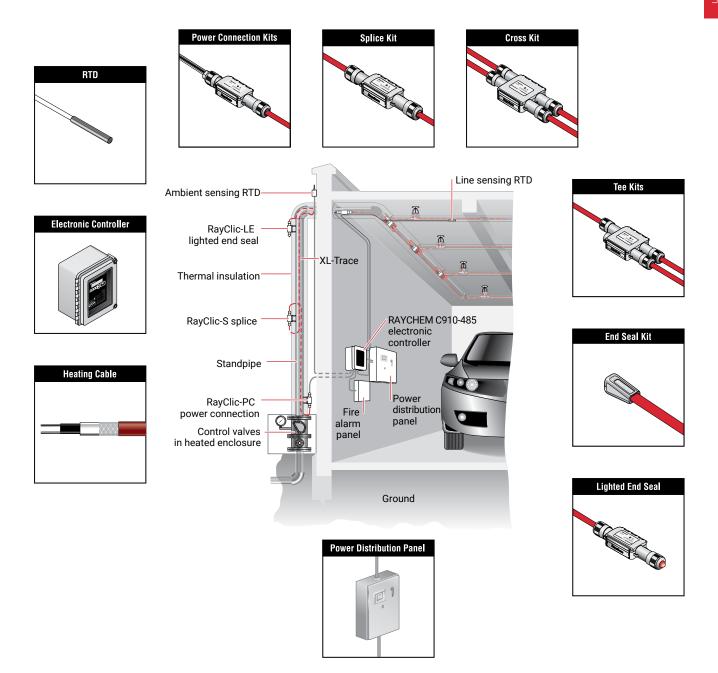
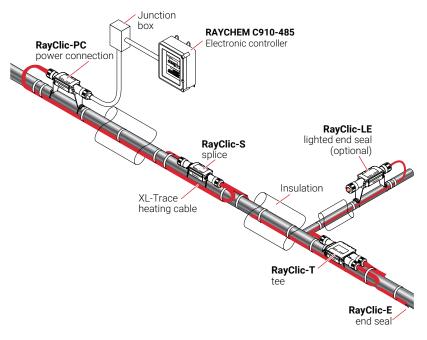



Fig. 3 Typical XL-Trace pipe freeze protection system

Fire Supply Lines

XL-Trace is designed to maintain fire supply lines at 40°F (4°C) in areas subject to freezing.

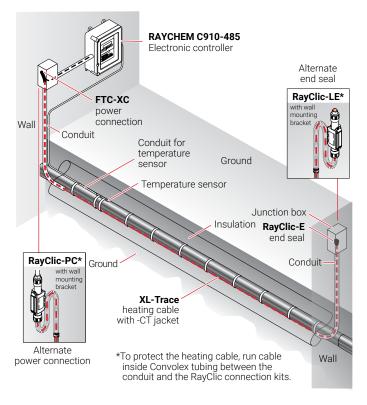
ABOVEGROUND SUPPLY PIPING

Fig. 4 Typical aboveground supply piping system

Application Requirements

The system complies with nVent requirements for aboveground general water piping when:

- The heating cable is permanently secured to insulated metal pipes with GT-66 glass tape or to plastic pipes using AT-180 aluminum tape.
- RAYCHEM C910-485 or ACS-30 controllers with integrated ground-fault protection and alarm contacts are used and are connected to a fire control panel.
- The heating cable is installed per manufacturer's instructions with approved RAYCHEM connection kits. See Table 11 on page 71 and the XL-Trace System Installation and Operation Manual (H58033).


Approvals

UL Listed and c-CSA-us Certified for nonhazardous locations.

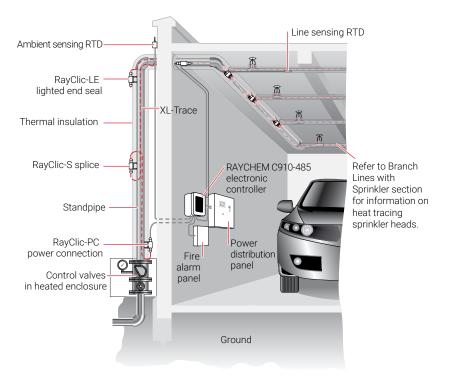
BURIED PIPING

Fig. 5 Typical buried piping system

Application Requirements

The system complies with nVent requirements for use on buried insulated metal or plastic pipe when:

- The heating cable is permanently secured to insulated metal pipes with GT-66 glass tape or to plastic pipes using AT-180 aluminum tape.
- The pipeline is buried at least 2-feet deep.
- The heating cable has a fluoropolymer outer jacket (-CT).
- All heating cable connections (power, splice, tee, and end termination) are made aboveground. No buried or in-conduit splices or tees are allowed.
- The power connection and end seal are made in UL Listed and CSA Certified junction boxes, or RayClic connection kits, above grade.
- The heating cable is protected from the pipe to the power connection box in UL Listed and CSA Certified water-sealed conduit (minimum 3/4-inch diameter) suitable for the location.
- RAYCHEM C910-485 or ACS-30 controllers with integrated ground-fault protection and alarm contacts are used and are connected to a fire control panel.
- Closed-cell, waterproof thermal insulation with fire-retardant, waterproof covering approved for direct burial is used.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 13 on page 73 and the XL-Trace System Installation and Operation Manual (H58033).


Approvals

UL Listed and c-CSA-us Certified for nonhazardous locations.

Sprinkler Standpipes

XL-Trace is designed to maintain fire suppression system standpipes at 40°F (4°C) in areas subject to freezing.

FOR ABOVEGROUND STANDPIPES

Fig. 6 Standard sprinkler standpipe heating system layout

Application Requirements

The system complies with nVent requirements for freeze protection of sprinkler system piping when:

- The heating cable is permanently secured to insulated metal pipes with GT-66 glass tape or to plastic pipes using AT-180 aluminum tape.
- Schedule 5, 10, 20, or 40 steel sprinkler standpipe up to and including 20 inches in diameter is used.
- UL Listed fiberglass or closed cell flame-retardant insulation with weatherproof cladding is used.
- RAYCHEM C910-485 or ACS-30 controllers with integrated ground-fault protection and alarm contacts are used and are connected to a fire control panel.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 11 on page 71 and the XL-Trace System Installation and Operation Manual (H58033).

Approvals

UL Listed and c-CSA-us Certified for nonhazardous locations.

Branch Lines with Sprinklers

XL-Trace is designed to maintain branch lines containing sprinklers at 40°F (4°C) in areas subject to freezing.

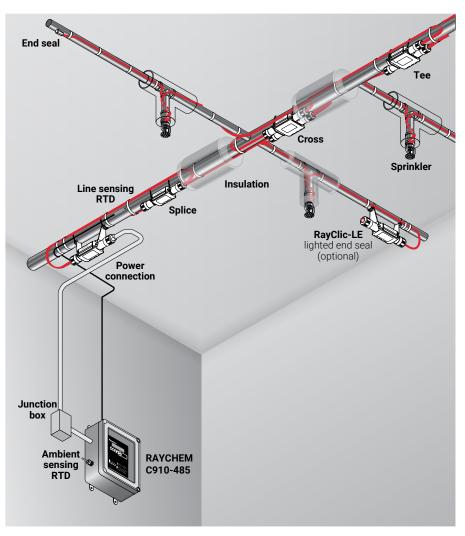


Fig. 7 Typical fire suppression system for branch lines with sprinklers

Application Requirements

The system complies with nVent requirements for fire suppression branch lines with sprinklers when:

- The heating cable is permanently secured to metal pipes with GT-66 glass tape, or to plastic pipes using AT-180 aluminum tape.
- RAYCHEM C910-485 or ACS-30 controllers with integrated ground-fault protection with alarm contacts are used and are connected to a fire control panel.
- The sprinkler design accounts for the sprinkler shadow created by the outer diameter of the thermal pipe insulation.
- Closed-cell, waterproof thermal insulation with fire-retardant, waterproof covering is used.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 13 on page 73 and the XL-Trace System Installation and Operation Manual (H58033).
- Additional heating cable is installed to compensate for sprinkler heads, sprigs, valves and pipe supports as detailed in the Table 6 on page 66 of this document and the XL-Trace System Installation and Operation Manual (H58033).

Approvals

c-CSA-us Certified for use in U.S. and Canada in nonhazardous locations.

Freezer Application

XL-Trace is designed to keep condensate in dry sprinklers from freezing and may be installed in freezers located in areas subject to freezing.

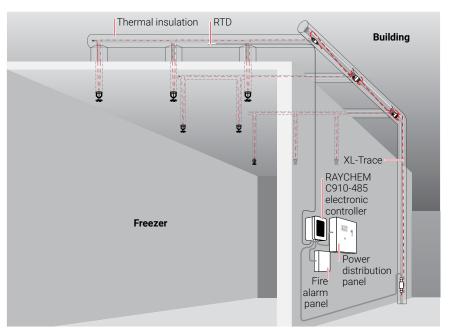


Fig. 8 Typical fire suppression system for freezer applications

Application Requirements

The system complies with nVent requirements for fire suppression systems for freezer applications when:

- · The system is for freezer and freezer within a freezer applications.
- The heating cable is permanently secured to metal pipes with GT-66 glass tape, or to plastic pipes using AT-180 aluminum tape.
- RAYCHEM C910-485 or ACS-30 controllers with integrated ground-fault protection and alarm contacts are used and are connected to a fire control panel.
- Closed-cell, waterproof thermal insulation with fire-retardant, waterproof covering is used for pipes and sprigs in areas subject to freezing.
- The sprinkler design accounts for sprinkler shadow created by the outer diameter of the thermal pipe insulation.
- The heating cable is installed per manufacturer's instructions with approved nVent connection kits. See Table 13 on page 73 and the XL-Trace System Installation and Operation Manual (H58033).
- Additional heating cable is installed to compensate for sprinkler heads, sprigs, valves and pipe supports as detailed in the Table 6 on page 66 of this document and the XL-Trace System Installation and Operation Manual (H58033).

Approvals

c-CSA-us Certified for use in U.S. and Canada in nonhazardous locations.

FIRE SUPPRESSION SYSTEM FREEZE PROTECTION DESIGN

Fire Sprinkler System Freeze Protection

so that by the end of this section you will have the information you need for your Bill of Materials. TraceCalc Pro for Buildings is an online design tool available to help you create simple or complex heat-tracing designs for pipe freeze protection or flow maintenance applications. It is available at nVent.com.

This section details the design steps necessary to design your application.

The examples provided in each step are intended to incrementally illustrate the project parameter output for two sample designs from start to finish. As you go through each step, use the "XL-Trace System Fire Sprinkler System Freeze Protection Design Worksheet," page 78, to document your project parameters,

Your system design requires the following essential steps.

- Determine design conditions and pipe heat loss
- **2** Select the heating cable
- **3** Determine the heating cable length
- 4 Determine the electrical parameters
- 5 Select the connection kits and accessories
- 6 Select the control system
- **7** Complete the Bill of Materials

Design Step by Step

Pipe Freeze Protection

	d Flow Maintenance
1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Complete the Bill

of Materials

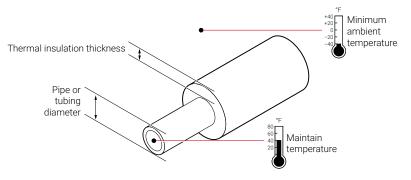
Step Determine design conditions and pipe heat loss

Collect the following information to determine your design conditions:

- Location
 - Indoors
 - Outdoors
 - Aboveground
 - Buried
- Maintain temperature (T_M)
- Minimum ambient temperature (T_A)
- Pipe diameter and material
- Pipe length
- · Thermal insulation type and thickness
- Supply voltage

Example: Fire Standpipe

Location Maintain temperature (T_M) Minimum ambient temperature (T_A) Pipe diameter and material Pipe length Thermal insulation type and thickness Supply voltage


Branch Line with Sprinkler

Location Maintain temperature (T_M) Minimum ambient temperature (T_A) Pipe diameter and material Pipe length Thermal insulation type and thickness Supply voltage Aboveground, outdoors 40°F (4°C) -20°F (-29°C) 10-inch metal 50 ft (16.4 m) 1 1/2-inch fiberglass 208 V

Indoors 40°F (4°C) 0°F (-18°C) 1-inch metal 200 ft (61 m) 1/2-inch closed-cell foamed elastomer 208 V

PIPE HEAT LOSS CALCULATIONS

To select the proper heating cable you must first determine the pipe heat loss. To do this you must first calculate the temperature differential (ΔT) between the pipe maintain temperature and the minimum ambient temperature.

Fig. 9 Pipe heat loss

Calculate temperature differential ΔT

To calculate the temperature differential $\Delta T),$ use the formula below: ΔT = T_M – T_A

Example: Fire Standpipe

T _M	40°F (4°C)
T _A	-20°F (-29°C)
	∆T = 40°F − (−20°F) = 60°F
	∆T = 4°C − (−29°C) = 33°C
Example: Branch Line with Sprinkler	
T _M	40°F (4°C)
T _A	0°F (-18°C)
	∆T = 40°F − (0°F) = 40°F
	∆T = 4°C − (−18°C) = 22°C

Determine the pipe heat loss

Match the pipe size, insulation thickness, and temperature differential (ΔT) from Table 1 on page 61 to determine the base heat loss of the pipe (Q_B).

Example: Fire Standpipe

Pipe diameter	10 inch
Insulation thickness	1 1/2 inch
ΔΤ	60°F (33°C)

Heat loss (Q_B) for 60°F must be calculated through interpolation between Δ T at 50°F and Δ T at 100°F from Table 1. For difference between the Δ T of 50°F and the Δ T of 100°F:

Q _{B-50}	8.1 W/ft (from Table 1)
Q _{B-100}	16.8 W/ft (from Table 1)
ΔT interpolation	ΔT 60°F is 20% of the distance between ΔT 50°F and ΔT 100°F
Q _{B-60}	$Q_{B-50} + [0.20 \times (Q_{B-100} - Q_{B-50})] = 8.1 + [0.20 \times (16.8 - 8.1)] = 9.8 W/ft$
Pipe heat loss (Q_B)	9.8 W/ft @ T _M 40°F (32.1 W/m @ T _M 4°C)

Example: Branch Line with Sprinkler

Example. Dranch Line with Spinikler	
Pipe diameter	1 inch
Insulation thickness	1/2 inch
ΔT	40°F (22°C)
Q_B for 40°F must be calculated through inte at 50°F from Table 1. For difference betwee	•
Q _{B-20}	1.4 W/ft (from Table 1)
Q _{B-50}	3.5 W/ft (from Table 1)
ΔT interpolation	ΔT 40°F is 67% of the distance between ΔT 20°F and ΔT 50°F
Q _{B-40}	$Q_{B_{-50}} + [0.67 \times (Q_{B_{-50}} - Q_{B_{-20}})] = 1.4 + [0.67 \times (3.5 - 1.4)] = 2.8 W/ft$
Pipe heat loss Q _B	2.8 W/ft @ Т _м 40°F (9.2 W/m @ Т _м 4°C)

Compensate for insulation type and pipe location

The base heat loss is calculated for a pipe insulated with thermal insulation with a k-factor ranging from 0.2 to 0.3 BTU/hr-°F-ft²/in (fiberglass or foamed elastomer) in an outdoor, or buried application. To get the heat loss for pipes insulated with alternate types of thermal insulation and for pipes installed indoors, multiply the base heat loss of the pipe (Q_B) from Step 3 by the insulation multiple from Table 3 on page 62 and the indoor multiple from Table 2 on page 62 to get the corrected heat loss:

 $Q_{CORRECTED} = Q_{B} x$ Insulation multiple x Indoor multiple

Example: Fire Standpipe

Location Thermal insulation thickness and type Pipe heat loss $Q_{\mbox{\tiny P}}$

Aboveground, outdoors 1 1/2-inch fiberglass 9.8 W/ft @ $T_M 40^{\circ}F$ (32.1 W/m @ $T_M 4^{\circ}C$) 9.8 W/ft x 1.00 x 1.00 = **9.8 W/ft @** $T_M 40^{\circ}F$ (32.1 W/m @ $T_M 4^{\circ}C$)

 $\mathsf{Q}_{\mathsf{CORRECTED}}$

Example: Branch Line with Sprinkler

Location Thermal insulation type and thickness Pipe heat loss Q_B =

Q_{CORRECTED} =

Aboveground, indoors 1/2-inch closed cell foamed elastomer 2.8 W/ft @ T_M 40°F (9.2 W/m @ T_M 4°C) 2.8 W/ft x 1.0 x 0.79 = **2.20 W/ft @** T_M 410°F (7.3 W/m @ T_M 4°C)

Insulation (AT)			Pipe diameter (IPS) in inches								
thickness (in)	°F	°C	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	3-1/2
0.5	20	11	1.0	1.2	1.4	1.6	1.8	2.2	2.5	3.0	3.4
	50	28	2.5	2.9	3.5	4.1	4.6	5.5	6.5	7.7	8.6
	100	56	5.2	6.1	7.2	8.6	9.6	11.5	13.5	16.0	18.0
	150	83	8.1	9.5	11.2	13.4	14.9	17.9	21.1	25.0	28.1
1.0	20	11	0.6	0.7	0.8	1.0	1.1	1.3	1.5	1.7	1.9
	50	28	1.6	1.9	2.2	2.5	2.8	3.2	3.8	4.4	4.9
	100	56	3.4	3.9	4.5	5.2	5.8	6.8	7.8	9.1	10.2
	150	83	5.3	6.1	7.0	8.2	9.0	10.6	12.2	14.2	15.9
1.5	20	11	0.5	0.6	0.7	0.8	0.8	1.0	1.1	1.3	1.4
	50	28	1.3	1.5	1.7	1.9	2.1	2.4	2.8	3.2	3.6
	100	56	2.8	3.1	3.5	4.0	4.4	5.1	5.8	6.7	7.4
	150	83	4.3	4.8	5.5	6.3	6.9	8.0	9.1	10.5	11.6
2.0	20	11	0.5	0.5	0.6	0.6	0.7	0.8	0.9	1.0	1.1
	50	28	1.1	1.3	1.4	1.6	1.8	2.0	2.3	2.6	2.9
	100	56	2.4	2.7	3.0	3.4	3.7	4.2	4.8	5.5	6.0
	150	83	3.7	4.2	4.7	5.3	5.8	6.6	7.5	8.5	9.4
2.5	20	11	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.9	1.0
	50	28	1.0	1.2	1.3	1.4	1.6	1.8	2.0	2.3	2.5
	100	56	2.2	2.4	2.7	3.0	3.3	3.7	4.2	4.7	5.2
	150	83	3.4	3.7	4.2	4.7	5.1	5.8	6.5	7.4	8.1
3.0	20	11	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.9
	50	28	1.0	1.1	1.2	1.3	1.4	1.6	1.8	2.0	2.2
	100	56	2.0	2.2	2.4	2.7	2.9	3.3	3.7	4.2	4.6
	150	83	3.1	3.4	3.8	4.3	4.6	5.2	5.8	6.6	7.1
4.0	20	11	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.7	0.7
	50	28	0.9	0.9	1.0	1.1	1.2	1.4	1.5	1.7	1.8
	100	56	1.8	2.0	2.1	2.4	2.5	2.9	3.2	3.5	3.8
	150	83	2.8	3.0	3.4	3.7	4.0	4.4	4.9	5.5	6.0

TABLE 1 PIPE HEAT LOSS (Q_B) FOR OUTDOOR OR BURIED PIPE (W/FT) FOR 1/2 TO 3-1/2 INCHES

Note: Multiply the W/ft heat loss values by 3.28 for W/m.

TABLE 1 CONTINUED PIPE HEAT LOSS (Q_B) FOR OUTDOOR OR BURIED PIPE (W/FT) FOR 4 TO 20 INCHES

Insulation thickness	(ΔΤ)				Pipe d	iameter (IP	S) in inche	s		
(in)	°F	°C	4	6	8	10	12	14	16	18	20
0.5	20	11	3.8	5.3	6.8	8.4	9.9	10.8	12.2	13.7	15.2
	50	28	9.6	13.6	17.4	21.4	25.2	27.5	31.3	35.0	38.8
	100	56	20.0	28.4	36.3	44.6	52.5	57.4	65.2	73.0	80.8
	150	83	31.2	44.3	56.6	69.6	81.9	89.5	101.7	113.8	126.0
1.0	20	11	2.1	2.9	3.7	4.5	5.3	5.8	6.5	7.3	8.0
	50	28	5.4	7.5	9.4	11.5	13.5	14.7	16.6	18.6	20.5
	100	56	11.2	15.6	19.7	24.0	28.1	30.6	34.7	38.7	42.8
	150	83	17.5	24.3	30.7	37.4	43.8	47.8	54.1	60.4	66.7
1.5	20	11	1.5	2.1	2.6	3.2	3.7	4.0	4.5	5.0	5.5
	50	28	3.9	5.3	6.7	8.1	9.4	10.2	11.5	12.9	14.2
	100	56	8.1	11.1	13.9	16.8	19.6	21.3	24.0	26.8	29.5
	150	83	12.7	17.3	21.6	26.2	30.5	33.2	37.5	41.8	46.1
2.0	20	11	1.2	1.7	2.1	2.5	2.9	3.1	3.5	3.9	4.3
	50	28	3.1	4.2	5.2	6.3	7.3	7.9	8.9	9.9	10.9
	100	56	6.6	8.8	10.9	13.1	15.2	16.5	18.6	20.7	22.8
	150	83	10.2	13.8	17.0	20.5	23.8	25.8	29.0	32.3	35.5
2.5	20	11	1.1	1.4	1.7	2.1	2.4	2.6	2.9	3.2	3.5
	50	28	2.7	3.6	4.4	5.2	6.1	6.6	7.4	8.2	9.0
	100	56	5.6	7.4	9.1	10.9	12.6	13.7	15.3	17.0	18.7
	150	83	8.7	11.6	14.2	17.0	19.7	21.3	23.9	26.5	29.1
3.0	20	11	0.9	1.2	1.5	1.8	2.0	2.2	2.5	2.7	3.0
	50	28	2.4	3.1	3.8	4.5	5.2	5.6	6.3	7.0	7.6
	100	56	4.9	6.5	7.9	9.4	10.8	11.7	13.1	14.5	15.9
	150	83	7.7	10.1	12.4	14.7	16.9	18.3	20.5	22.6	24.8
4.0	20	11	0.8	1.0	1.2	1.4	1.6	1.7	1.9	2.1	2.3
	50	28	2.0	2.5	3.1	3.6	4.1	4.4	5.0	5.5	6.0
	100	56	4.1	5.3	6.4	7.5	8.6	9.3	10.3	11.4	12.4
	150	83	6.4	8.3	10.0	11.8	13.4	14.5	16.1	17.8	19.4

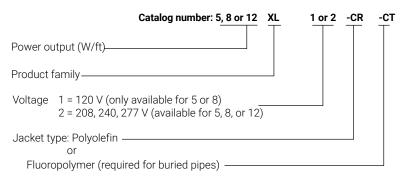
Note: Multiply the W/ft heat loss values by 3.28 for W/m.

TABLE 2 INDOOR PIPE HEAT LOSS MULTIPLES

Fiberglass thickness (in)	Indoor multiple
0.5	0.79
1	0.88
1.5	0.91
2	0.93
2.5	0.94
3	0.95
4	0.97

TABLE 3 INSULATION HEAT LOSS MULTIPLES

k factor at 50°F (10°C) (BTU/hr-°F-ft²/in)	Insulation multiple	Examples of preformed pipe insulation
0.1-0.2	0.6	Rigid cellular urethane (ASTM C591)
0.2-0.3	1	Glass fiber (ASTM C547) Foamed elastomer (ASTM C534)
0.3-0.4	1.4	Cellular glass (ASTM C552) Mineral fiber blanket (ASTM C553)


	e Freeze Protection d Flow Maintenance	St
1.	Determine design conditions and pipe heat loss	
2.	Select the heating cable	
3.	Determine the heating cable length	
4.	Determine the electrical parameters	
5.	Select the connection kits and accessories	
б.	Select the control system	
7.	Complete the Bill of Materials	

ep 🛿 Select the heating cable

To select the appropriate XL-Trace heating cable for your application, you must determine your cable supply voltage, power output, and outer jacket. Once you have selected these, you will be able to determine the catalog number for your cable.

HEATING CABLE CATALOG NUMBER

Before beginning, take a moment to understand the structure of the heating cable catalog numbers. You will refer to this numbering convention throughout the product selection process. Your goal is to determine the catalog number for the product that best suits your needs.

Fig. 10 Heating cable catalog number

Select the heating cable from Fig. 11 that provides the required power output to match the corrected heat loss for your application. Fig. 11 shows the power output for the heating cables on metal pipe at 120/208 volts. To correct the power output for other applied voltage or plastic pipes multiply the power output at the desired maintain temperature by the factors listed in Table 4 on page 64. If the pipe heat loss, $Q_{CORRECTED}$, is between the two heating cable power output curves, select the higher-rated heating cable.

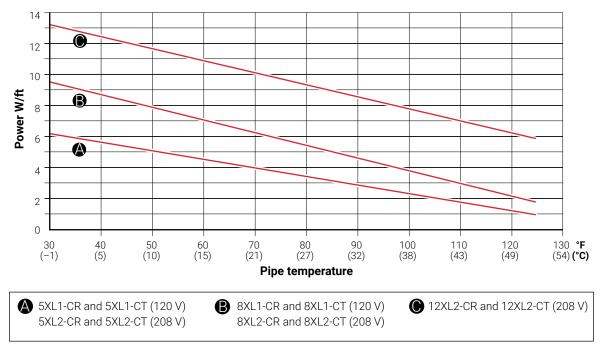


Fig. 11 Heating cable power output on metal pipe

TABLE 4 POWER OUTPUT CORRECTION FACTORS

Voltage correction factors	5XL1	8XL1	5XL2	8XL2	12XL2	
120 V	1.00	1.00	_	_	-	
208 V	-	-	1.00	1.00	1.00	
240 V	_	_	1.12	1.12	1.14	
277 V	-	-	1.29	1.27	1.30	
Plastic pipe correction facto (With AT-180 Aluminum tape)	r 0.75	0.75	0.75	0.75	0.75	

Confirm that the corrected power output of the heating cable selected is greater than the corrected pipe heat loss ($Q_{CORRECTED}$). If $Q_{CORRECTED}$ is greater than the power output of the highest-rated heating cable, you can:

- · Use two or more heating cables run in parallel
- · Use thicker insulation to reduce heat loss
- · Use insulation material with a lower k factor to reduce heat loss

Example: Fire Standpipe

Pipe maintain temperature (T_M) $Q_{CORRECTED}$

Supply voltage Pipe material Select heating cable

Supply voltage correction factor Pipe material correction factor Corrected heating cable power Selected heating cable

Example: Branch Line with Sprinkler

Pipe maintain temperature (T_M) $Q_{CORRECTED}$

Supply voltage Pipe material Select heating cable

Supply voltage correction factor Pipe material correction factor Corrected heating cable power Selected heating cable 40°F (4°C) (from Step 1) $Q_{CORRECTED} = 9.8 \text{ W/ft} @ T_M 40°F$ (32.1 W/m @ T_M 4°C) 208 V (from Step 1) Metal (from Step 1) $Q_{CORRECTED} = 9.8 \text{ W/ft} @ T_M 40°F$ (from Step 1) 12XL2 = 12.4 W/ft @ 40°F (from Fig. 11) 1.00 (from Table 4) Metal = 1.00 (from Table 4) 9.8 W/ft x 1.00 x 1.00 = 9.8 W/ft 12XL2

40°F (4°C) (from Step 1) 2.8 W/ft x 1.0 x 0.97 = 2.2 W/ft @ T_M 40°F (7.3 W/m @ T_M 4°C) 208 V (from Step 1) Metal (from Step 1) Q_{CORRECTED} = 2.2 W/ft @ T_M 40°F (from Step 1) 5XL2 = 5.6 W/ft @ 40°F (from Fig. 11) 1.00 (from Table 4) Metal = 1.00 5.6 x 1.00 x 1.00 = 5.6 W/ft **5XL2**

SELECT OUTER JACKET

Select the appropriate heating cable outer jacket for the application. Jacket options are:

- -CR Compatible with most XL-Trace applications
- -CT Required for buried piping; may be used in other XL-Trace applications for improved mechanical strength and chemical resistance.

Example: Fire Standpipe

Location:

Selection:

Aboveground, outdoors 12XL2-CR

Example: Branch Line with Sprinkler

Location:

Selection:

Aboveground, indoors 5XL2-CR

Step Determine the heating cable length

In Step 2 you selected the appropriate heating cable and the number of runs of heating cable required for the pipe. Multiply the length of the pipe by the number of heating cable runs for the heating cable length.

Heating cable length = Pipe length x No. heating cable runs

Additional heating cable will be required for heat sinks and connection kits. Use Table 5 and Table 6 to determine the additional footage required for heat sinks (valves, flanges, and pipe supports). You will determine the additional heating cable for connection kits in Step 5. Round up fractional lengths to ensure heating cable lengths are sufficient.

Total heating cable =	(Pipe length x No. +	Additional heating cable
length required	heating cable runs)	for heat sinks (valves, pipe
		supports, and flanges)

TABLE 5 ADDITIONAL HEATING CABLE FOR VALVES

Pipe diameter (IPS) inches	Heating of	cable feet (meters)
1/2	0.8	(0.24)
3/4	1.3	(0.4)
1	2.0	(0.6)
1-1/4	3.3	(1.1)
1-1/2	4.3	(1.3)
2	4.3	(1.3)
3	4.3	(1.3)
4	4.3	(1.3)
б	5.0	(1.5)
8	5.0	(1.5)
10	5.6	(1.7)
12	5.9	(1.9)
14	7.3	(2.2)
18	9.4	(2.9)
20	10.5	(3.2)

Pipe Freeze Protection and Flow Maintenance						
1.	Determine design conditions and pipe heat loss					
2.	Select the heating cable					
3.	Determine the heating cable length					
4.	Determine the electrical parameters					
5.	Select the connection kits					

and accessories 6. Select the control system

Complete the Bill 7. of Materials

TABLE 6 ADDITIONAL HEATING CABLE FOR PIPE SUPPORTS, FLANGES AND SPRINKLERS

Support	Additional cable
Pipe hangers (insulated)	No additional heating cable
Pipe hangers (noninsulated) and U-bolt supports	Add 2x pipe diameter
Welded support shoes	Add 3x the length of the shoe
Flanges	Add 2x pipe diameter
Sprinklers	
Sprinkler without sprig	Add 4x pipe diameter
Sprinkler with sprig	Add 3x sprig length
Dry sprinkler for freezer application	Add 2x sprinkler length

Note: For applications where more than one heating cable is required per foot of pipe, this correction factor applies for each cable run.

Example: Fire Standpipe

Pipe length	50 ft (60 m) (from Step 1)
Pipe diameter	10-inch metal (from Step 1)
Number of heating cable runs	1 (from Step 2)
Valves	1 control valve
	5.6 ft x 1 valve = 5.6 ft (1.7 m)
Pipe supports	5 pipe hangers with U-bolts
	10-inch pipe diameter = 10/12 = 0.83
	[0.83 ft pipe diameter x 2] x 5 pipe supports = 8.3 ft (2.5 m)
Flanges	3
	10-inch pipe diameter – 10/12 = 0.83 ft
	[0.83 ft pipe diameter x 2] x 3 pipe supports = 5.0 ft (1.5 m)
Total heating cable for heat sinks	5.6 ft (1.7 m) + 8.3 ft (2.5 m) + 5.0 ft (1.5 m)
	= 18.9 ft (4.2 m) Rounded up to 19 ft (65 m)
Total heating cable length required	50 ft (15 m) x 1 run + 19 ft = 69 ft (21 m) of 12XL2-CR
Example: Branch Line with Sprinkler	
Pipe length	200 ft (61 m) (from Step 1)
Pipe diameter	1-inch metal (from Step 1)
Number of heating cable runs	1 (from Step 2)
Valves	2 gate valves [2.0 ft x 2 gate valves] x 1 run = 4.0 ft (1.2 m)
Pipe supports	10 noninsulated hangers

Sprinklers

Total heating cable for heat sinks

Total heating cable length required

10 noninsulated hangers 1-inch pipe diameter = 1/12 = 0.1 ft [0.1 ft pipe diameter x 2) x 10 pipe supports] x 1 run = 2.0 ft (0.6 m) 20 with 1 foot sprigs [3 x 1 ft sprig] x 20 = 60 ft (18.3 m) 4.0 ft (1.2 m) + 2.0 ft (0.6 m) + 60 ft (18.3 m) = 66 ft (20.1 m) 200 ft x 1 run + 66 ft = **266 ft (81 m) of 5XL2-CR**

Pipe Freeze Protection and Flow Maintenance 1. Determine design conditions and

	pipe heat loss
2.	Select the heating
	cable

3. Determine the heating cable length

- 4. Determine the electrical parameters 5. Select the
- connection kits and accessories
- 6. Select the control system 7. Complete the Bill
- of Materials

Step Determine the electrical parameters

To determine the electrical requirements for your application, you must determine the number of circuits and calculate the transformer load.

DETERMINE NUMBER OF CIRCUITS

To determine the number of circuits, you need to know:

- · Total heating cable length
- Supply voltage
- Minimum start-up temperature

Use Table 7 to determine the maximum circuit length allowed. If the total heating cable length exceeds the maximum circuit length for the expected start-up temperature, more than one circuit will be required.

Number of circuits = Heating cable length required

Maximum heating cable circuit length

Mimportant: Select the smallest appropriate ground-fault circuit breaker size.

🗥 WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

TABLE 7 MAXIMUM CIRCUIT LENGTH IN FEET

						40°F	Maintain					
Start-up	СВ	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°F)	size (A)	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-20°F	15	101	76	174	178	183	131	138	146	111	114	117
	20	134	101	232	237	245	175	184	194	148	151	156
	30	201	151	349	356	367	262	276	291	223	227	234
	40	270	201	465	474	478	349	368	388	297	303	312
0°F	15	115	86	199	203	209	149	157	166	120	122	126
	20	153	115	265	271	279	199	209	221	160	163	168
	30	230	172	398	406	419	298	314	331	239	244	252
	40	270	210	470	490	530	370	390	420	319	326	336
20°F	15	134	100	232	237	244	173	182	192	126	129	133
	20	178	133	309	315	325	231	243	257	169	172	177
	30	270	200	464	473	488	346	365	385	253	258	266
	40	270	210	470	490	530	370	390	420	340	344	355
40°F	15	160	119	278	283	292	206	217	229	142	145	150
	20	214	159	370	378	390	275	290	306	190	194	200
	30	270	210	470	490	530	370	390	420	285	291	300
	40	270	210	470	490	530	370	390	420	340	360	380

							4°C Maint	ain				
Start-up	CB size	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°C)	(A)	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-29°C	15	31	23	53	54	56	40	42	44	34	35	36
	20	41	31	71	72	75	53	56	59	45	46	48
	30	61	46	106	108	112	80	84	89	68	69	71
	40	82	61	142	145	149	106	112	118	90	92	95
-18°C	15	35	26	61	62	64	45	48	51	36	37	38
	20	47	35	81	83	85	61	64	67	49	50	51
	30	70	52	121	124	128	91	96	101	73	74	77
	40	82	64	143	149	162	113	119	128	97	99	102
−7°C	15	41	31	71	72	74	53	56	59	39	39	41
	20	54	41	94	96	99	70	74	78	51	52	54
	30	82	61	141	144	149	106	111	117	77	79	81
	40	82	64	143	149	162	113	119	128	104	105	108
4°C	15	49	36	85	86	89	63	66	70	43	44	46
	20	65	48	113	115	119	84	88	93	58	59	61
	30	82	64	143	149	162	113	119	128	87	89	91
	40	82	64	143	149	162	113	119	128	104	110	116

TABLE 8 MAXIMUM CIRCUIT LENGTH IN METERS

Example: Fire Standpipe

Total heating cable length Supply voltage Minimum start-up temperature Number of circuits

Example: Branch Line with Sprinkler

Total heating cable length Supply voltage Minimum start-up temperature Number of circuits 69 ft (21 m) of 12XL2-CR (from Step 3) 208 V (from Step 1) -20°F (-29°C) (from Step 1) 69 ft / (111 ft max 15 A CB at -20°F) = 0.6 circuits

Round up to 1 circuit

266 ft (81 m) of 5XL2-CT (from Step 3) 208 V (from Step 1) 0°F (-18°C) (from Step 1) 266 ft / (398 ft max 30 A CB at 0°F) = 0.67 circuits **Round up to 1 circuit**

DETERMINE TRANSFORMER LOAD

Transformers must be sized to handle the load of the heating cable. Use the following tables to calculate the total transformer load.

TABLE 9 TRANSFORMER SIZING (AMPERES/FOOT)

Minimum start-up	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°F)	120	120	208	240	277	208	240	277	208	240	277
-20	0.119	0.159	0.069	0.067	0.065	0.092	0.087	0.082	0.108	0.106	0.102
0	0.105	0.139	0.060	0.059	0.057	0.080	0.076	0.072	0.100	0.098	0.095
20	0.090	0.120	0.052	0.051	0.049	0.069	0.066	0.062	0.095	0.093	0.090
40	0.075	0.101	0.043	0.042	0.041	0.058	0.055	0.052	0.084	0.083	0.080

TABLE 10 TRANSFORMER SIZING (AMPERES/METER)

Minimum start-up	5XL1	8XL1		5XL2			8XL2			12XL2	
temperature (°C)	120	120	208	240	277	208	240	277	208	240	277
-20	0.391	0.521	0.226	0.221	0.215	0.301	0.286	0.270	0.354	0.347	0.336
-18	0.343	0.457	0.198	0.194	0.188	0.264	0.251	0.238	0.329	0.322	0.312
-7	0.294	0.394	0.170	0.166	0.161	0.227	0.216	0.205	0.311	0.305	0.296
4	0.246	0.331	0.142	0.139	0.135	0.191	0.181	0.172	0.276	0.271	0.263

Use Table 9 or Table 10 to determine the applied voltage and the maximum A/ft (A/m) at the minimum start-up temperature to calculate the transformer load as follows:

Max A/ft at minimum start-up temperature x Heating cable length (ft)	
x Supply voltage	 т

	=	Iransformer
1000		load (kW)

Example: Fire Standpipe

Total heating cable length	69 ft (21 m) of 12XL2-CR (from Step 3)
Supply voltage	208 V
Minimum start-up temperature	-20°F (-29°C) (from Step 1)
Max A/ft at −20°F x Total feet x Supply voltage	– = (0.108 A/ft x 69 ft x 208 V) / 1000
1000	(0.108 A/11 x 09 11 x 208 V) / 1000
Transformer load (kW)	= 1.68 kW

Example: Branch Line with Sprinkler

Transformer load (kW)	= 3.3 kW		
1000	- (0.000 A/11 × 200 11 × 200 V) / 1000		
Max A/ft at 0°F x Total feet x Supply voltage	— = (0.060 A/ft x 266 ft x 208 V) / 1000		
Minimum start-up temperature	0°F (-18°C) (from Step 1)		
Supply voltage	208 V		
Total heating cable length	266 ft (81 m) of 5XL2-CT (from Step 3)		

	e Freeze Protection d Flow Maintenance
1.	Determine design conditions and pipe heat loss
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits and accessories
6.	Select the control system
7.	Complete the Bill of Materials

Step Select the connection kits and accessories

All XL-Trace systems require a power connection and end seal kit. Splice and tee kits are used as required. Use Table 11 on page 71 (for aboveground applications) and Table 13 on page 73 (for buried applications) to select the appropriate connection kits.

Note: Add extra cable on your Bill of Materials for power connections, tees, and end seals. See Table 11 on page 71, Table 13 on page 73, and Table 14 on page 74 for more information.

WARNING: Approvals and performance are based on the use of nVent-specified parts only. Do not substitute parts or use vinyl electrical tape.

ABOVEGROUND PIPING

Fig. 12 RayClic connection system

Use the following table for general piping, standpipe and sprinkler. Develop a Bill of Materials from the connection kits listed in the following table

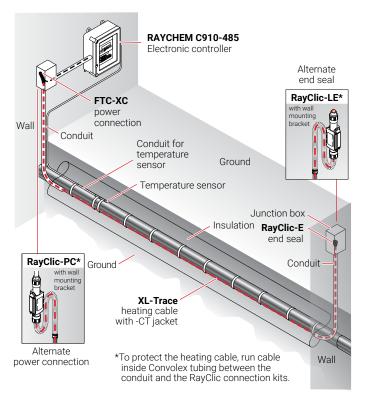
TABLE 11 CONNECTION KITS AND ACCESSORIES FOR ABOVEGROUND PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Connection kits					
	RayClic-PC	Power connection and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	2 ft (0.6 m)
	RayClic-PS	Powered splice and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	4 ft (1.2 m)
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	RayClic-PT	Powered tee and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	6 ft (1.8 m)
	FTC-P ²	Power connection and end seal kit	1	1 per circuit	3 ft (0.9 m)
		Note: FTC-P is required for circuits requiring 40 A circuit breakers.			
	RayClic-S	Splice used to join two sections of heating cable	1	As required	2 ft (0.6 m)
	RayClic-T	Tee kit with end seal; use as needed for pipe branches	1	As required	3 ft (0.9 m)
	RayClic-X	Cross connection to connect four heating cables	1	As required	8 ft (2.4 m)
Joseph Contraction of the second seco	FTC-HST ³	Low-profile splice/tee; use as needed for pipe branches	2	As required	3 ft (0.9 m)
AL AL	RayClic-LE	Lighted end seal (RayClic-SB-04 pipe mounting bracket included)	1	Alternate end seal	2 ft (0.6 m)
	RayClic-E	Replacement end seal	1	Additional end seal	0.3 ft (0.1 m)

TABLE 11 CONNECTION KITS AND ACCESSORIES FOR ABOVEGROUND PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Accessories					
	RayClic-SB-04	Pipe mounting bracket. Required for mounting the kits off the pipe for exposure temperatures greater than 150°F (65°C) and for grease and fuel line splices and tees.	1	As required	-
	RayClic-SB-02	Wall mounting bracket	1	As required	-
No.	ETL	"Electric Traced" label (use 1 label per 10 feet of pipe)	1	1 label per 10 feet (3 m) of pipe	-
	GT-66	Glass cloth adhesive tape for attaching heating cable to pipe at 40°F (4°C) or above.	66 ft (20 m)	See Table 12	_
	GS-54	Glass cloth adhesive tape for attaching heating cable to pipe above -40° F (-40° C).	54 ft (20 m)	See Table 12	-
	AT-180	Aluminum tape. Required for attaching heating cable to plastic pipe (use 1 foot of tape per foot of heating cable)	180 ft (55 m)	1 ft/ft (0.3 m/m) of heating cable	_

¹ Allow extra heating cable for ease of component installation.


² Junction box not included.

³One RayClic-E end seal is required for each FTC-HST used as a tee kit.

TABLE 12 QUANTITY OF GLASS CLOTH ADHESIVE TAPE REQUIRED (ATTACH AT 1-FOOT INTERVALS)

Pipe size (in)	<2	3	4	6	8	10
Feet of pipe per GT-66 roll	60 (18 m)	50 (15 m)	40 (12 m)	25 (8 m)	20 (6 m)	15 (5 m)
Feet of pipe per GS-54 roll	49 (15 m)	41 (13 m)	33 (10 m)	20 (6 m)	16 (5 m)	12 (4 m)

BURIED PIPING

Fig. 13 Typical buried supply piping system

Use the following for buried water supply piping. Note that all connections must be aboveground and that no splices/tees are allowed. Develop a Bill of Materials from the connection kits in this table.

TABLE 13 CONNECTION KITS AND ACCESSORIES FOR BURIED PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance¹
	RayClic-PC	Power connection and end seal kit (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	2 ft (0.6 m)
	FTC-XC ²	The FTC-XC power connection and end seal kit is for use with XL-Trace heating cable that is run through conduit to a junction box. Materials for one power connection and end seal is included in the kit.	1	1 per circuit	2 ft (0.6 m)
		Note: FTC-XC is required for circuits requiring 40 A circuit breakers.			
a find the	RayClic-LE	Lighted end seal (RayClic-SB-04 pipe mounting bracket included)	1	Alternate end seal	2 ft (0.6 m)
	RayClic-E	Replacement end seal	1	Additional end seal	0.3 ft (0.1 m)

TABLE 13 CONNECTION KITS AND ACCESSORIES FOR BURIED PIPING

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Accessories					
T.	RayClic- SB-04	Pipe mounting bracket	1	As required	-
	RayClic- SB-02	Wall mounting bracket	1	As required	-
NO NO	ETL	"Electric Traced" label (use 1 label per 10 feet of pipe)	1	1 label per 10 feet (3 m) of pipe	-
	GT-66	Glass cloth adhesive tape for attaching heating cable to pipe at 40°F (4°C) or above	66 ft (20 m)	See Table 14	_
	GS-54	Glass cloth adhesive tape for attaching heating cable to pipe above -40°F (-40°C)	54 ft (20 m)	See Table 14	-
	AT-180	Aluminum tape. Required for attaching heating cable to plastic pipe (use 1 foot of tape per foot of heating cable)	180 ft (55 m)	1 ft/ft (0.3 m/m) of heating cable	_

¹ Allow extra heating cable for ease of component installation.

² Junction box not included.

TABLE 14 QUANTITY OF GLASS CLOTH ADHESIVE TAPE REQUIRED (ATTACH AT 1-FOOT INTERVALS)

Pipe size (in)	<2	3	4	6	8	10
Feet of pipe per GT-66 roll	60 (18 m)	50 (15 m)	40 (12 m)	25 (8 m)	20 (6 m)	15 (5 m)
Feet of pipe per GS-54 roll	49 (15 m)	41 (13 m)	33 (10 m)	20 (6 m)	16 (5 m)	12 (4 m)

Step Select the control system

Temperature control with heating cable circuit supervision is required by approval agencies, codes and nVent. To satisfy this requirement nVent offers a wide variety of monitoring and control options for fire suppression system.

RAYCHEM C910-485 and ACS-30 are the only controllers approved for this application:

- Temperature controls save energy by ensuring that the system is energized only when necessary.
- Superior accuracy and reliability with RTD temperature sensors.
- Integrated 30 mA ground-fault protection for cost savings and circuit protection.
- Self-test features to ensure the heating cable circuit integrity even when the system is not in demand.
- Modbus® protocol communication over RS-485 system is supported using RAYCHEM ProtoNode multi-protocol gateways.
- Dry contact alarm relay outputs for loss of power, low temperature, RTD failure, relay failure and ground-fault trip.

Note: NFPA 13 requires that heat tracing for fire suppression systems are supervised by controllers with alarm relays connected to the fire control panel.

Use the following table to identify the control system suitable for your application. Contact your nVent representative or call (800) 545-6258 for more information and other control options.

TABLE 15 TEMPERATURE CONTROL OPTIONS

Application	RAYCHEM C910-485	RAYCHEM ACS-30
Ambient sensing	Х	Х
Line sensing	Х	Х
Buried pipe	Х	Х
Proportional ambient control	Х	Х
Fire sprinklers	Х	х
Sensor	RTD	RTD
Sensor length	See data sheet	See data sheet
Setpoint range	30°F to 200°F (-1°C to 92°C)	н
Enclosure	NEMA 4X	п
Differential	3°F (1.6°C)	н
Setpoint repeatability	3°F (1.6°C)	н
Enclosure limits	−40°F to 140°F (−40°C to 60°C)	II
Switch rating	30 A	30 A
Switch type	DPST	DPST
Electrical rating	100-277 V	100-277 V
Approvals	c-CSA-us	c-CSA-us
Ground-fault protection	20 mA to 100 mA	20 mA to 100 mA
BMS interface	Standard	Modbus ¹
Alarm outputs	Х	Х
AC relay dry contact relay	Х	х

¹ ProtoNode multi-protocol gateways are available from nVent.

 Pipe Freeze Protection and Flow Maintenance

 1. Determine design conditions and pipe heat loss

 2. Select the heating cable

 3. Determine the heating cable length

 4. Determine the electrical parameters

 5. Select the connection kits and accessories

6. Select the control

Complete the Bill of Materials

system

7.

TABLE 16CONTROL SYSTEMS

	Catalog number	Description
Electronic Controlle	ers and Sensors	
	C910-485	The RAYCHEM C910-485 is a compact, full-featured microprocessor- based single-point heat-trace controller. The C910-485 provides control and monitoring of electrical heat-tracing circuits for both freeze protection and temperature maintenance, and can be set to monitor and alarm for high and low temperature, and ground-fault level. The C910-485 controller is available with an electromechanical relay (EMR). Communications modules are available for remote control and configuration.
		The RAYCHEM C910-485 includes RS-485 communications module for interfacing with Building Management Systems (BMS) and fire control panels.
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in commercial freeze protection and flow maintenance applications. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers.
		The ProtoNode-RER is for BACnet® or Metasys® N2 systems.
	RTD-200 RTD3CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers.
	RTD10CS RTD50CS	RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing
		RTD3CS: temperature sensor with a 3-ft (0.9 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing
		RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing

	Pipe Freeze Protection and Flow Maintenance					
1.	Determine design conditions and pipe heat loss					
2.	Select the heating cable					
3.	Determine the heating cable length					
4.	Determine the electrical parameters					
5.	Select the connection kits and accessories					
6.	Select the control system					
7.	Complete the Bill of Materials					

Step Complete the Bill of Materials

If you used the Design Worksheet to document all your design parameters, you should have all the details necessary complete your Bill of Materials.

Follow the installation and maintenance procedures in the XL-Trace System Installation and Operation Manual (H58033) when installing XL-Trace on fire suppression systems with the following additional instructions.

When installing XL-Trace on sprinklers follow the methods shown below:

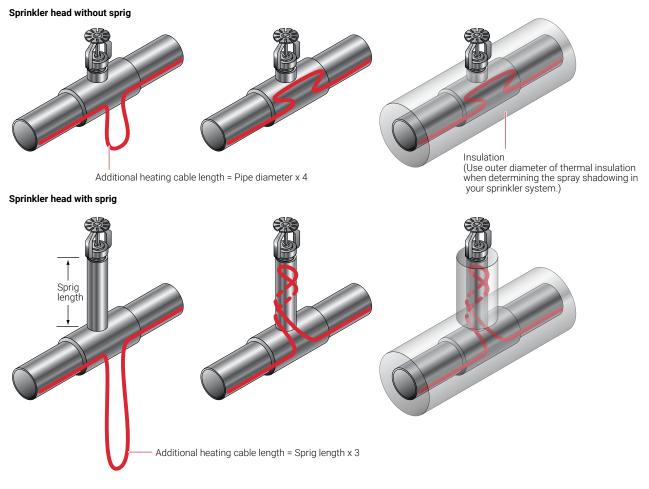


Fig. 14 XL-Trace on sprinklers

Note: The orientation and type of sprinkler head shown above is only for reference. The illustrations only depict the amount of heat tracing required and how to install it.

When installing XL-Trace on dry pendant sprinklers used in freezer applications follow the methods shown below:

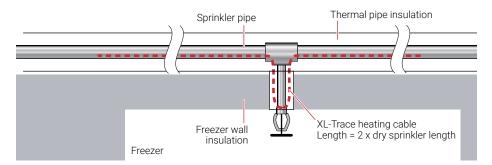


Fig. 15 XL-Trace on extended pendant sprinklers

XL-TRACE SYSTEM FIRE SPRINKLER SYSTEM FREEZE PROTECTION DESIGN WORKSHEET

TraceCalc Pro for Buildings is an online design tool available to help you create simple or complex heat-tracing designs for pipe freeze protection or flow maintenance applications. It is available at nVent.com.

Step Determine design conditions and pipe heat loss

Design conditions									
Fire sprinkler system	Location		Maintain temp. (T _M)	Min. ambient temp. (T _A)	Pipe diameter and material		Pipe length	Thermal insu type and thicl	
Supply pipingStandpipe	IndoorsOutdoors	AbovegroundBuried			in	MetalPlastic	ft (m)	Fiberglass	in
Sprinkler piping	IndoorsOutdoors	AbovegroundBuried			in	MetalPlastic	ft (m)	Fiberglass	in
Branchpipe	IndoorsOutdoors	Aboveground			in	MetalPlastic	ft (m)	Fiberglass	in
Branchpipe with sprinkler	IndoorsOutdoors	Aboveground			in	MetalPlastic	ft (m)	Fiberglass	in
Example: ✓ Branch line with sprinkler	✓ Indoor		40°F	50°F	1 in	✓ Metal	200 ft	✓ Foam elastomer	1/2 in
Pipe heat loss									
Calculate temper	ature differe	ntial ∆T							
Pipe maintain tempe	erature (T _M)	°F (°C)							
Ambient temperatur	re (T _A)	°F (°C)							
 T _M					=	ΔΤ			
Example: Pipe Free	ze Protection	- Branch line with	sprinkler						
Pipe maintain tempe	erature (T _M)	<mark>40 °F</mark> (f	rom Step 1)						
Ambient temperatur	re (T _A)	<u>0 °F</u> (f °F	rom Step 1)						
40 °F	0°F				=	40 °F			
Т _м	T _A					ΔΤ			

Fire Sprinkler System Freeze Protection

Determine the pipe heat loss: See Table 1 for the base heat loss of the pipe (Q_B) . If the ΔT for your system is not listed, interpolate between the two closest values.

Q _{B-50} ΔT1	
	W/ft (W/m)
Q _{B-100} ΔT2	
2	W/ft (W/m)
Q _B	\\//ft (\\//m)
Pipe diameter	W/ft (W/m)
ripe diameter	in
Insulation thickness	
	in
ΔΤ	 ۹۲ (۹۵)
0	°F (°C)
Q _{B-50}	W/ft (W/m)
Q _{B-50}	•••••••
0.0	W/ft (W/m)

Example: Pipe Free	ze Protection - Bra
Pipe diameter	1 in
Insulation thickness	1/2 in
ΔT	40°F
Q _{B-T1}	1.4 W/ft
Q _{B-T2}	3.5 W/ft
ΔT interpolation	∆T 40°F is 67% of
Q _{B-40}	Q _{B-50} + [0.67 x (Q _B
Pipe heat loss (Q_B)	2.8 W/ft @ T _M 40

Compensate for insulation typ See Table 1 for the pipe heat loss (Q See Table 3 for insulation multiple See Table 2 for indoor multiple	pe and pipe location $_{\rm B}$). If the ΔT for your system is not listed, interpolate between the two closest values.		
Location			
Insulation thickness and type			
Q _B			
Insulation multiple	w/it (w/m)		
Indoor multiple (if applicable)			
	Q _B X Insulation multiple X Indoor multiple Q _{CORRECTED} = Q _{CORRECTED} Q _{CORRECTED}		
Example: Pipe Freeze Protection	- Branch line with sprinklers		
Location	Indoors		
Insulation thickness and type	1-1/2 in foamed elastomer		
Q _B	2.8 W/ft @ T _M 40°F (9.2 W/m @ T _M 4°C)		
Insulation multiple	1.00		
Indoor multiple	0.79		
Q _{CORRECTED}	2.8 W/ft x 1.0 x 0.79 = 2.2 W/ft @ T _M 40°F (7.3/m @ T _M 4°C)		

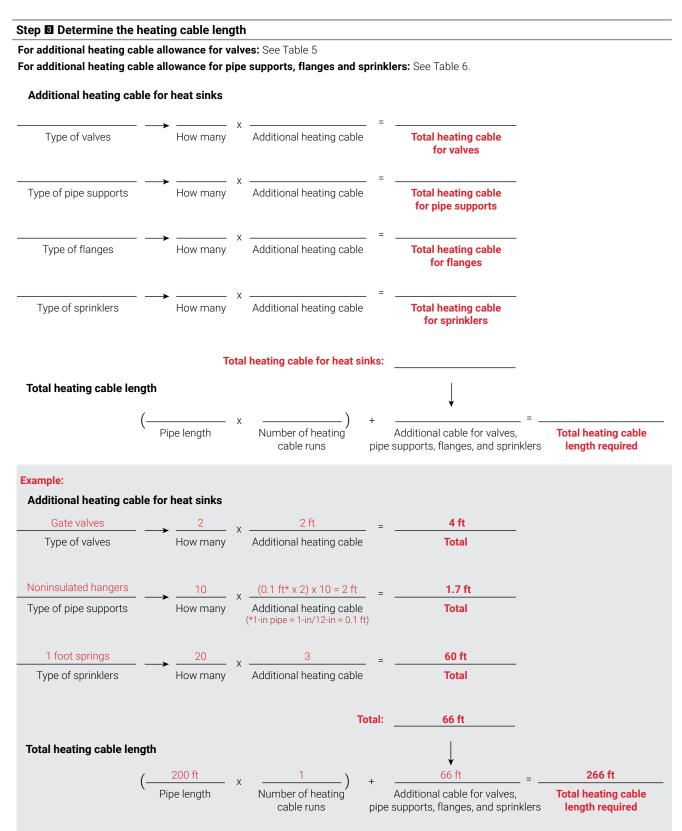
Step 2 Select the heating cable

Power output data: See Fig. 11 Power output correction factors: See Table 4		
Pipe maintain temperature (T _M)		(from Step 1)
Corrected heat loss (Q _{CORRECTED})		(from Step 1)
Supply voltage		(from Step 1)
Pipe material (metal or plastic)		(from Step 1)
XL-Trace application (water, fuel oil, or greasy waste) Pipe freeze protection: general water piping, sprinkler piping Flow maintenance: greasy waste lines, fuel lines		(from Step 1)
Maximum system use temperature (T _{MAX})		(from Step 1)
Heating cable selected		(from Step 1)
Power at T _M (120/208 V)		
Power output correction factor		(from Step 1)
Plastic pipe correction factor		
Power at rated V factor X — = Plastic pipe correction factor	Corrected power	-

Is the heating cable power output ($P_{CORRECTED}$) ≥ the corrected heat loss? □ Yes □No

If No, then design with additional runs of heating cable or thicker thermal insulation.

Example: Pipe Freeze Protection - Branch line with sprinklers 40°F Maintain temperature (T_M) 2.2 W/ft @ T_M 40°F Corrected heat loss ($Q_{CORRECTED}$) 208 V Supply voltage Pipe material (metal or plastic*) (*AT-180 aluminum tape required for installing heating cable on plastic pipes) metal $Q_B = 2.2 \text{ W/ft} @ T_M 40^{\circ}\text{F}$ Select curve C: 5XL2 = 5.6 W/ft @ 40°F Power output correction factor: 208 V = 1.00Pipe material correction factor: Metal = 1.00 Corrected heating cable power: 5.6 @/ft x 1.00 x 1.00 = 5.6 W/ft


Select: 5XL2

Select outer jacket

-CR

□ -CT (Required for buried applications)

Example: Pipe Freeze Protection – Branch line with sprinklers		
Location	Aboveground, indoors	
Selection:	5XL2-CR	

Step Determine the electrical parameters

Determine maximum o See Table 7 and Table 8	sircuit length and number of circuits
Total heating cable ler	
Supply voltage:	□ 120 V □ 208 V □ 240 V □ 277 V
	□ 15 A □ 20 A □ 30 A □ 40 A
Minimum start-up tem	nperature
Maximum circuit leng	ih
Total heating cable leng	th required Maximum heating cable circuit length Number of circuits
Example:	
Total heating cable ler	ngth required 266 ft of 5XL2-CT
Supply voltage:	□ 120 V ⊡ 208 V □ 240 V □ 277 V
Circuit breaker size:	□ 15 A □ 20 A ☑ 30 A □ 40 A
Minimum start-up ten	nperature <u>0°F</u>
Number of circuits	<u>0.67 ft</u>
266 ft	/ 398 ft = 0.67 circuits, round up to 2
Total heating cable leng	th required Maximum heating cable circuit length Number of circuits
Determine transformer See Table 9 and Table 10. 	x x / 1000 =
	load (kW)

Example:			
0.06 A/ft	266 ft	x208 V	/ 1000 =
Max A/ft* at minimum start-up temperature	Heating cable length	Supply voltage	Transformer load (kW)

Step Select the connection kits and accessories

See Table 11.

Connection kits – Aboveground	Description	Quantity	Heating cable allowance
RayClic-PC	Power connection and end seal		
RayClic-PS	Power splice and end seal		
RayClic-PT	Powered tee and end seal		
G FTC-P	Power connection and end seal		
RayClic-S	Splice		
RayClic-T	Tee kit with end seal		
RayClic-X	Cross connection		
□ FTC-HST	Low-profile splice/tee		
RayClic-LE	Lighted end seal		
RayClic-E	Extra end seal		
Connection kits – Buried	Description	Quantity	Heating cable allowance
RayClic-PC	Power connection and end seal		
FTC-XC	Power splice and end seal		
RayClic-LE	Lighted end seal		
RayClic-E	Extra end seal		
Accessories – Aboveground and buried	Description	Quantity	
RayClic-SB-04	Pipe mounting bracket	, ,	
□ RayClic-SB-02	Wall mounting bracket		_
	"Electric-Traced" label		_
GT-66	Glass cloth adhesive tape		_
□ GS-54	Glass cloth adhesive tape		_
□ AT-180	Aluminum tape (for plastic pipes)		_
	Administri tape (tor plastic pipes)		_
			Total heating cable allowance for connection kits

Total heating cable length Total heating cable allowance for connection kits

- =

Total heating cable length required

Step Select the control system

See Table 16.

Thermostats, controllers and accessories	Description	Quantity
C 910-485	Microprocessor-based single-point heat-tracing controller with RS-485 communication	
ACS-UIT2	ACS-30 user interface terminal	
ACS-PCM2-5	ACS-30 power control panel	
ProtoNode-RER	Multi-protocol gateway	
RTD3CS	Resistance temperature device	
□ RTD10CS	Resistance temperature device	
□ RTD-200	Resistance temperature device	
□ RTD50CS	Resistance temperature device	

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

ROOF ICE MELT - RIM SYSTEM

This design guide provides the information necessary to help our design engineers design your nVent RAYCHEM Roof Ice Melt (RIM) system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	87
How to Use this Guide Warranty	
SYSTEM OVERVIEW	89
Typical RIM System Typical RIM2 System	
ROOF ICE MELT (RIM) DESIGN	92
Design Step by Step	92
Step 1 Customer Provides Preliminary Design Inputs	92
Step 2 nVent Prepares a Budgetary System Proposal	92
Step 3 Customer Reviews RIM System Budgetary Proposal	92
Step 4 nVent Finalizes the RIM System Proposal	92
Step 5 Customer Approves Final System Design	92
Step 6 nVent Provides the Materials for the Project	93
Step 7 Field Support Services Provide Project Support, as applicable	
Step 8 Installer Installs and Tests the RIM System	93
ROOF ICE MELT (RIM) ESTIMATE FORM	94

INTRODUCTION

RAYCHEM Roof Ice Melt (RIM) system maintains a continuous path for roof snow melt to drain from the roof through the gutter and downspout and is ideal for the following applications:

- Roofs made from standard roofing materials, including shake, shingle, rubber, tar, wood, metal, and plastic.
- Gutters made from standard materials, including metal, plastic, and wood.
- · Downspouts made from standard materials, including metal and plastic.

How to Use this Guide

Our nVent design professionals work with Customers—architects, contractors, or building owners—to understand the design requirements for a project.

This design guide presents the key design and performance data that we need to collect in order to design your system.

For questions, please contact your nVent representative, or call 888.313.5666, or email: RIMCustomerCare@nvent.com.

nVent' standard limited warranty applies to RAYCHEM Roof and Gutter De-icing Systems.

An extension of the limited warranty period to twenty (20) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

Warranty

The RAYCHEM RIM System is our premier engineered, aesthetically elegant, concealed roof & gutter de-icing solution to prevent ice dams, icicles, and frozen gutter problems. The RIM system mechanically protects the self-regulating cable, provides high power output along the entire roof edge, and is ideal for new construction or renovation of buildings for all snow load areas, for residential or commercial buildings.

RIM System panels secure the heating cables in a fixed heat transfer position. They are specifically designed for eaves, valleys, channels, rakes and flat roof sections and come in a variety of aesthetically pleasing colors and finishes as standard or custom options to meet any project need.

Typically the performance requirements of a system vary based on the severity of the annual snow load and snow accumulation in a given area as well as other design factors, including the weather patterns and temperature cycles, ambient temperatures, wind speeds, lake effects, elevation, northern/southern roof exposures, type of roof and roof material, overhang distance and roof features such as dormers, towers and valleys.

Snow load is the amount of snow on a roof for a large portion of winter, whereas snow accumulation is the actual depth of snow on the ground from a single or series of snow storms. Both conditions play a role in the severity of roof and gutter challenges you may face.

	Annual Snow Load in (cm)	Annual Snow Accumulation in (cm)
Light	under 20 (51)	<6 (15)
Moderate	20 - 100 (51 - 254)	6 - 15 (15 - 38)
Heavy	over 100 (254)	>15 (38)

Typical RIM System

RIM System embeds multiple runs of high wattage lceStop self-regulating heating cable offering the highest performing heating system with the most efficient heat transfer and cable protection. It is designed for heavy snow load areas with roof snow accumulation <u>over</u> 15 inches, and annual snowfall of <u>over</u> 100 inches.

A typical RIM system includes the following:

- RIM panels and connection kits
- Control system
- Power distribution

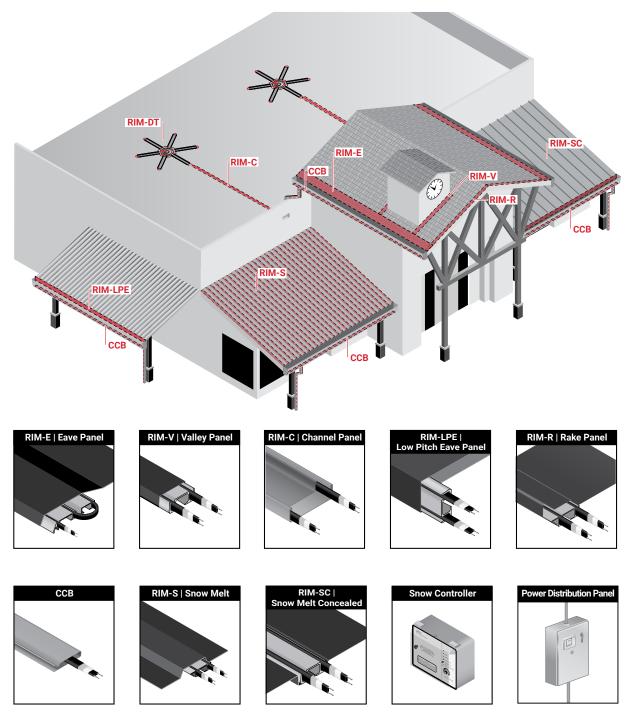
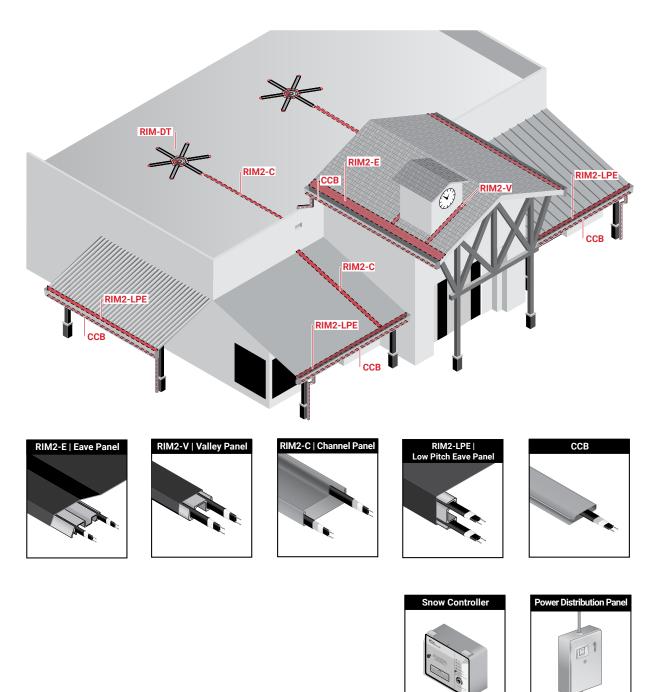



Fig. 1 Typical RIM Roof Ice Melt system

RIM2 System embeds 2 runs of energy-efficient WFP self-regulating heating cable and is designed for light to moderate snow load areas with roof snow accumulation <u>under</u> 15 inches, and annual snowfall of <u>under</u> 100 inches.

A typical RIM2 system includes the following:

- RIM2 panels and connection kits
- Control system
- Power distribution

ROOF ICE MELT (RIM) DESIGN

Design Step by Step

These simple steps depict how Customers work with nVent design professionals to incorporate RAYCHEM RIM system into a project.

Step Customer Provides Preliminary Design Inputs

For new construction, provide the following to our nVent design professionals:

- Site plan locating walkways, decks and driveways
- · Roof plan, power distribution
- Building elevations and recommendations

For retrofits, provide the following to our nVent design professionals

- Complete the Estimate Form that will determine the basis for the design
- For color options with Aluminum cover panel please refer to RIM color guide H59379

Step 2 nVent Prepares a Budgetary System Proposal

 Prepare the design with recommended scope, RAYCHEM RIM materials layout and power requirements.

Step Customer Reviews RIM System Budgetary Proposal

- Review the proposal and either confirm the scope or specify changes to the proposal as needed for the RIM system installation you desire.
- Specify wiring for future RIM System additions, as needed (Note: A retrofit RIM system installation can cost 25 – 40% more than the cost of installing a RIM system initially)

Step Step Note: Step Step

• Implement the requested changes and make any final recommendations that are appropriate, like a control and monitoring solution or any relevant Field Support/Engineering Services that are best suited for the project.

Step 5 Customer Approves Final System Design

Approve the final system design and Field Support / Engineering Services, as applicable.

Step Step Nent Provides the Materials for the Project

- Supply the RIM materials to the customer, including:
 - Metal base panel for attachment to the roof
 - Safe, self-regulating heating cable
 - Copper or painted aluminum cover panel
 - Accessory components as required (end caps, splice covers, etc.)
 - Appropriate control system, as applicable.
- Provide the following details to the project's Engineer and/or Contractor:
 - Engineering designs and installation instructions
 - Junction box locations (per design recommendations)
 - Control panel loads and location, circuit breaker sizing
 - Material layout plans with circuit design loads and circuit breaker sizing
 - Control panel layout and system testing procedures

Step **Z** Field Support Services Provide Project Support, as applicable

- · Perform the electrical evaluation/testing procedure
- Train the installer to install the RIM system
- · Commissioning, supervision and troubleshooting

Step Step

- Install the RIM system per the installation instructions as per design layouts
- Conduct control panel layout and system testing procedures
- Perform commissioning tests and complete warranty documentation

Email completed form to your nVent Sales Rep for a complete Bill of Materials and quote!

ROOF & GUTTER SYSTEM ESTIMATE FORM

Need Quote For: HEATING CABLE SYSTEM RIM CONCEALED SYSTEM BOTH

CHECK OUT OUR ONLINE ROOF AND GUTTER DE-ICING DESIGN TOOL at nVent.com

by selecting the Commercial or Residential segment -> Resources and click on the **Roof & Gutter De-Icing Calculator** design tool.

1. Building Type & Conditions:	House	Gamma Small shop / strip mall	High-rise residential / multi-use bldg.	Commercial building
(check all that apply)		New Construction	n 🖵 Retrofit	
	Annua	I Snow Fall 🛛 🖵 less than 1	00 inches 🛛 more than 100	inches
2. Area Name:				
3. Type of Roof:	Sloped Roof Shingle	Gilling Sloped Roof Shingle	Gilling Sloped Roof Shingle	Sloped Roof Shingle
	Metal Roof−Seams □ 18" □ 24" □ _"	Metal Roof−Seams □ 18" □ 24" □"	Metal Roof−Seams □ 18″ □ 24″ □″	Metal Roof−Seams □ 18″ □ 24″ □ _″
	🖵 Don't Trace Roof	🖵 Don't Trace Roof	🖵 Don't Trace Roof	🖵 Don't Trace Roof
4. Roof Pitch:	Less than 3/12 Equal to or more than 3/12	□Less than 3/12 □ Equal to or more than 3/12	Less than 3/12 Equal to or more than 3/12	Less than 3/12 Equal to or more than 3/12
5. Length of Roof Edge:	feet	feet	feet	feet
6. Eave Overhang Distance:	□ 0" □ 12" □ 24" □ 36"	0 " 1 2" 2 4" 3 6"	• 0" • 12" • 24" • 36"	0 ″ 1 2″ 2 4″ 3 6″
	(other) inches	(other) inches	(other) inches	(other) inches
7. Gutters:	Total Length: feet	Total Length: feet	Total Length: feet	Total Length: feet
	Depth: inches	Depth: inches	Depth: inches	Depth: inches
	Width: Inches	Width: Inches	Width: Inches	Width: Inches
	No Gutters	No Gutters	□ No Gutters	No Gutters
8. Downspouts:	Number of Downspouts:	Number of Downspouts:	Number of Downspouts:	Number of Downspouts:
		Average Downspout Length: ft	Average Downspout Length: ft	Average Downspout Length:
	Single Run in Downspout	Single Run in Downspout	Single Run in Downspout	
	Loop Run in Downspout	Loop Run in Downspout	Loop Run in Downspout	Loop Run in Downspout
	No Preference	No Preference	No Preference	No Preference
9. Valleys:	Number of Valleys:	Number of Valleys:	Number of Valleys:	Number of Valleys:
	Average Valley Length: ft	Average Valley Length: ft	Average Valley Length: ft	Average Valley Length: ft
10. Voltage:	□ 120 V □ 208 V □ 240 V □ 277 V	□ 120 V □ 208 V □ 240 V □ 277 V	□ 120 V □ 208 V □ 240 V □ 277 V	□ 120 V □ 208 V □ 240 V □ 277 V
11. Circuit Breaker Size:	🖬 15 A 🖬 20 A 🗔 30 A	🖬 15 A 🖬 20 A 🗔 30 A	🖬 15 A 🖬 20 A 🗔 30 A	🖬 15 A 🖬 20 A 🗔 30 A
12. RIM Cover Panel:	Galaxie Calinted Aluminum	Generation State Aluminum Kynar® Painted Aluminum	Generation States Aluminum Content Aluminum	Generation Contemption Painted Aluminum
	Copper	Copper	Copper	Copper
13. Controllers:	Ambient Temperature Only	Ambient Temperature Only	Ambient Temperature Only	Ambient Temperature Only
	Ambient & RIM Panel Temperature (HECS)	Ambient & RIM Panel Temperature (HECS)	Ambient & RIM Panel Temperature (HECS)	Ambient & RIM Panel Temperature (HECS)
	Gutter Moisture & Temperature Sensor	Gutter Moisture & Temperature Sensor	Gutter Moisture & Temperature Sensor	Gutter Moisture & Temperature Sensor
14. Notes:			· · ·	
15. Customer name:				
Company:				
Phone:				
Email:				
Project name:				
Project location:			BUSINE	SS CARD

ROOF AND GUTTER DE-ICING - ICESTOP SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM IceStop roof and gutter de-icing system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	95
How to Use this Guide Safety Guidelines Warranty	96
SYSTEM OVERVIEW	97
Typical System Self-Regulating Heating Cable Construction Approvals	98
ROOF AND GUTTER DE-ICING DESIGN	
Design Step by Step Step 1 Determine design conditions Step 2 Select the heating cable Step 3 Determine the heating cable length Step 4 Determine the electrical parameters Step 5 Select the connection kits Step 6 Select attachment accessories and method Step 7 Select the control system and power distribution Step 8 Complete the Bill of Materials	
ICESTOP SYSTEM ROOF AND GUTTER DE-	

ΙΝΤ	RO	וח	JCT	ΙΟΝ	

RAYCHEM IceStop is a roof and gutter de-icing system that provides drain paths for the following applications:

ICING DESIGN WORKSHEET128

- Roofs made from standard roofing materials, including shake, shingle, rubber, tar, wood, metal, and plastic.
- Gutters made from standard materials, including metal, plastic, and wood.
- Downspouts made from standard materials, including metal and plastic.

The guide does **not** cover applications in which any of the following conditions exist:

- Preventing snow movement on roofs IceStop will not keep snow or ice from falling off the roof. IceStop is designed to remove melt water, not accumulated snow. Snow fences or snow guards should be used to eliminate snow movement.
- Melting snow on a roof and/or reduction of snow load IceStop is designed to remove melt water, not accumulated snow.

If your application conditions are different, or if you have any questions, contact your nVent representative, or call (800) 545-6258.

How to Use this Guide

This design guide presents nVent recommendations for designing an IceStop roof and gutter de-icing system. It provides design and performance data, electrical sizing information, and heating-cable layout suggestions. Following these recommendations will result in a reliable, energy-efficient system.

OTHER REQUIRED DOCUMENTS

This guide is not intended to provide comprehensive installation instructions. For complete IceStop roof and gutter de-icing system installation instructions, please refer to the following additional required documents:

- IceStop System Installation and Operation Manual (H58067)
- Additional installation instructions that are included with the connection kits, thermostats, controllers, and accessories

If you do not have these documents, you can obtain them from the nVent web site at nVent.com.

For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

m
m
m M This symbol identifies particularly important safety warnings that must be followed.

🗥 WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

nVent' standard limited warranty applies to RAYCHEM Roof and Gutter De-icing Systems.

An extension of the limited warranty period to ten (10) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

Safety Guidelines

Warranty

The RAYCHEM lceStop system can prevent ice dams and icicles by maintaining a continuous path for melt water to drain from the roof. The lceStop system uses a self-regulating heating cable which reduces heat output automatically as the cable warms to above freezing, resulting in lower energy use, and eliminating the possibility of overheating. A typical roof and gutter de-icing system includes the lceStop self-regulating heating cables, connection kits, control system and power distribution.

Typical System

- A typical system includes the following:
- IceStop self-regulating heating cable
- Connection kits and accessories
- Control system
- Power distribution

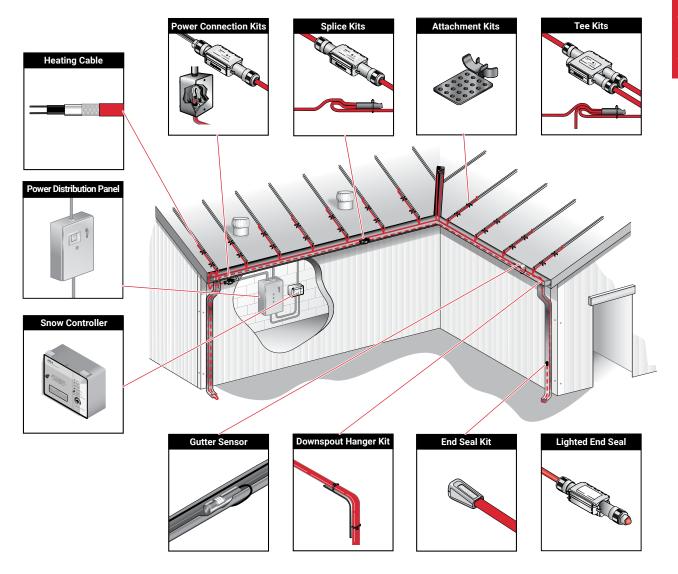
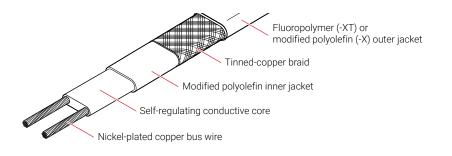



Fig. 1 Typical IceStop roof and gutter de-icing system

Self-Regulating Heating Cable Construction

RAYCHEM lceStop self-regulating heating cables are comprised of two parallel nickel-coated bus wires in a cross-linked polymer core, a tinned copper braid and a fluoropolymer or polyolefin outer jacket. These cables are cut to length simplifying the application design and installation.

Fig. 2 IceStop heating cable construction

With self-regulating technology, the number of electrical paths between bus wires changes in response to temperature fluctuations. As the temperature surrounding the heater decreases, the conductive core contracts microscopically. This contraction decreases electrical resistance and creates numerous electrical paths between the bus wires. Current flows across these paths to warm the core.

As the temperature rises, the core expands microscopically. This expansion increases electrical resistance and the number of electrical paths decreases. The heating cable automatically begins to reduce its output.

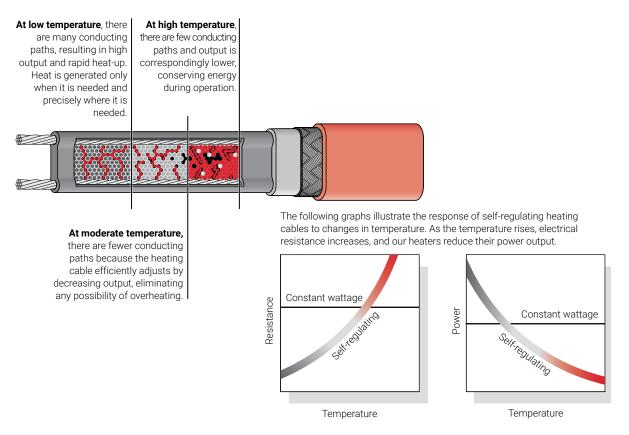


Fig. 3 Self-regulating heating cable technology

The IceStop roof and gutter de-icing system is UL Listed, CSA Certified, and FM Approved for use in nonhazardous locations. GM-1XT and GM-2XT are FM Approved for use in Class I, Division 2 hazardous locations.

ROOF AND GUTTER DE-ICING DESIGN

Design Step by Step

This section details the design steps necessary to design your application. The example provided in each step is intended to incrementally illustrate the project parameter output for a sample design from start to finish. As you go through each step, use the "IceStop System Roof and Gutter De-Icing Design Worksheet" on page 128, to document your project parameters, so that by the end of this section, you will have the information you need for your Bill of Materials.

Roof & Gutter De-Icing Calculator is an online design tool available to help you create roof & gutter designs and layouts. It is available at nVent.com.

- 1 Determine design conditions
- 2 Select the heating cable
- 3 Determine the heating cable length
- 4 Determine the electrical parameters
- 5 Select the connection kits
- 6 Select attachment accessories and method
- **2** Select the control system and power distribution
- 8 Complete the Bill of Materials

Roof and Gutter De-Icing 1. Determine design conditions 2. Select the heating cable 3. Determine the heating cable length 4. Determine the electrical parameters 5. Select the connection kits 6. Select attachment accessories and method 7. Select the control system and power distribution 8. Complete the Bill of Materials

Step Determine design conditions

Collect the following information to determine your design conditions:

- Type of roof
- Layout
 - Roof edge
 - Eave overhang
 - Gutters
 - Length
 - Depth
 - Width
 - Roof valley
 - Roof/wall intersections
 - Downspouts
- Supply voltage
- Minimum start-up temperature
- Control method

PREPARE SCALE DRAWING

Draw to scale the roof of the building noting roof valleys, different roof levels and gutter and downspout locations. Note rating and location of voltage supply. Measurements for each distinct section of the roof system, the gutters and the downspouts, will allow for an accurate systems design, including control configuration.

Example: Roof and Gutter De-Icing System

Type of roof	Sloped roof – standard with wood shingles and gutters
Layout	
Roof edge	50 ft (15.2 m) x 2 roof edges = 100 ft (30.5 m)
Eave overhang	24 inch (60 cm)
Gutters	2 gutters
Length	50 ft (15.2 m) x 2 roof edges = 100 ft (30.5 m)
Depth	6 in (15 cm)
Width	4 in (11 cm)
Roof valley	20 ft (6.1 m)
Downspouts	12 ft (3.7 m) x 2 downspouts = 24 ft (7.4 m)
Supply voltage	208 V
Minimum start-up temperature	20°F (-7°C)
Control method	Automatic controller

	Roof and Gutter De-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits
6.	Select attachment accessories and method
7.	Select the control system and power distribution
8.	Complete the Bill of Materials

Step 2 Select the heating cable

To select the appropriate lceStop heating cable for your application, use the supply voltage from Step 1, and select the appropriate outer jacket material. Once you select these, you will be able to determine the catalog number for your cable.

HEATING CABLE CATALOG NUMBER

Before beginning, take a moment to understand the structure underlying the heating cable catalog numbers. You will refer to this numbering convention throughout the product selection process. Select the appropriate heating cable catalog number based on the voltage and outer jacket, as indicated below.

		Catalog number:	GM	-	1 or 2	-X or -XT
Product	family					
Voltage	1 = 120 V 2 = 208-277 V					
Jacket ty	pe: Polyolefin or Fluoropolymer					

Fig. 4 Heating cable catalog number

SELECT HEATING CABLE SUPPLY VOLTAGE

Select the heating cable supply voltage. Note that a higher supply voltage will allow for longer circuit lengths. Supply voltage options include:

1 = 120 V

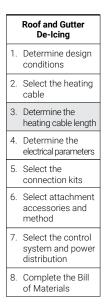
2 = 208-277 V

EVALUATE HEATING CABLE SPECIFICATIONS

Use the following table to evaluate heating cable specifications that describe some important aspects of the heating cable.

TABLE 1 ICESTOP SELF-REGULATING HEATING CABLE SPECIFICATIONS

Power output (nominal)	12 W/ft (39 W/m) in ice or snow
Minimum installation temperature	0°F (-18°C)
Minimum bend radius	5/8 in (16 mm)


SELECT OUTER JACKET

Select the appropriate heating cable outer jacket for the application. Jacket options include:

- -X A polyolefin outer jacket (-X) is more economical for less demanding applications.
- -XT A fluoropolymer outer jacket (-XT) provides maximum abrasion, chemical, and mechanical resistance.

Example: Roof and Gutter De-Icing System

Supply voltage	208 V (from Step 1)
Catalog number	GM-2XT

Step 3 Determine the heating cable length

To determine the required heating cable length for your application, you will need to determine the heating cable layout for each roof and gutter section that requires ice protection. Detailed sketches of the building from Step 1 can ensure each area and level is accounted for. The following guide will help determine length of cable required for a variety of roof types and sections. For applications not covered in this section, please contact nVent for assistance.

Heating cable layout depends primarily on the roof type and its related roof features. The following sections show typical layouts on standard roof types.

TABLE 2 ROOF TYPES AND AREAS

Roof type	Page
Sloped roof – standard	page 103
Sloped roof – standing seam	page 104
Flat roof	page 105
Sloped roof without gutters	page 106
Roof features	
Roof valley	page 107
Roof/wall intersections	page 107
Gutters	page 108
Downspouts	page 109

Important: For optimum performance, the heating cable should be in contact with snow or ice. Installing the heating cable under the roofing or the roofing materials will reduce the efficiency of the heating system. Please contact nVent for assistance.

Fig. 5 and Fig. 6 below illustrate several important terms:

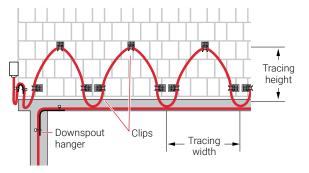


Fig. 5 Front view of roof with IceStop system

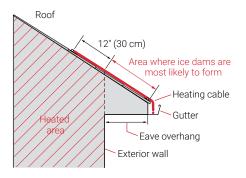
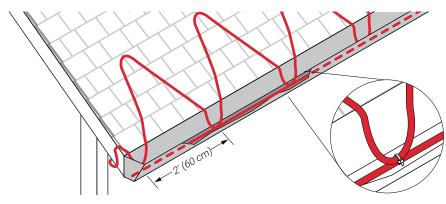



Fig. 6 Side view of roof with IceStop system

SLOPED ROOF - STANDARD

For sloped roofs, ice dams may form at the roof edge. To maintain a continuous path for melt water runoff, route the heating cable in a zig-zag pattern as shown in Fig. 7 and follow the appropriate attachment recommendations in "Step 6 Select attachment accessories and method". Additional heating cable may be needed for other gutters, downspouts, and valleys.

Fig. 7 Layout in a zig-zag pattern

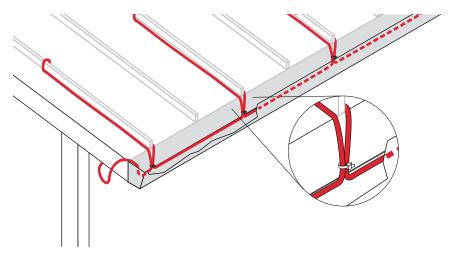
- Install the heating cable on the roof in a zig-zag pattern as shown in Fig. 7.
- Run heating cable up the roof until it is 12 inches (30 cm) past the exterior wall into the heated area (see Fig. 6 on page 102).
- Use Table 3 to determine how much heating cable to use per foot of roof edge. This will determine how much heating cable you need to trace on the roof. Additional heating cable will be needed for gutters, downspouts, and component connections.

TABLE 3ICESTOP HEATING CABLE LENGTH FOR SLOPEDROOF - STANDARD

Eave overhang distance	Traci	ng width	Tracing height	Feet of heating cable per foot of roof edge	Meters of heating cable per meter of roof edge
0	2 ft	(60 cm)	12 in (30 cm)	2.5 ft	2.5 m
12 in (30 cm)	2 ft	(60 cm)	24 in (60 cm)	3.1 ft	3.1 m
24 in (60 cm)	2 ft	(60 cm)	36 in (90 cm)	4.2 ft	4.2 m
36 in (90 cm)	2 ft	(60 cm)	48 in (120 cm)	5.2 ft	5.2 m

For roofs without gutters, add 6 inches of heating cable per foot of roof edge (0.5 meters of heating cable per meter of roof edge) to allow for a 2-3 inch (5-8 cm) drip loop to hang off the roof edge as shown in Fig. 10 on page 106.

For roofs with gutters, heating cable must be run to the bottom of the gutter. You can determine the amount of extra heating cable required by adding twice the gutter depth per foot of roof edge to the amount determined in Table 3.


For example, for a 6 inch deep gutter, add 1 foot of heating cable per foot of roof edge to the amount determined using Table 3.

Additional heating cable must be run along the bottom of the gutter. See "Gutters" on page 108.

Note: Attachment methods are not shown in Fig. 7. For attachment methods, proceed to "Step 6 Select attachment accessories and method".

SLOPED ROOF - STANDING SEAM

For sloped standing-seam metal roofs, ice dams may form at the roof edge. To maintain a continuous path for melt water to run off, route the heating cable along the seams as shown in Fig. 8 and follow the attachment recommendations in "Step 6 Select attachment accessories and method" on page 115. Additional heating cable may be needed for gutters, downspouts, and valleys.

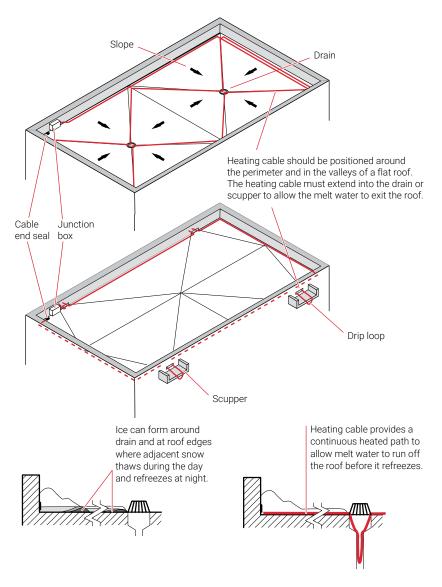
Fig. 8 Layout on a standing seam roof

- Run the heating cable up one side of the seam, loop it over to the other side, and return it to the bottom of the gutter. Continue along the bottom of the gutter to the third seam and repeat the process (Fig 8 on page 104). If the seams are more than 24 inches (60 cm) apart, trace every seam.
- Run the heating cable up the seam until it is 12 inches (30 cm) past the exterior wall and into a heated area, Fig. 6 on page 102.
- If the roofing materials continue down the fascia, contact your local nVent representative or nVent directly for design assistance.
- If there are no gutters, refer to "Heated Drip Edges" on page 120, for information on how to install heating cable for this application.

Eave overhang distance	Standing seam spacing	Tracing height	Feet of heating cable per foot of roof edge	Meters of heating cable per meter of roof edge
12 in (30 cm)	18 in (45 cm)	24 in (60 cm)	2.8 ft	2.8 m
24 in (60 cm)	18 in (45 cm)	36 in (90 cm)	3.6 ft	3.6 m
36 in (90 cm)	18 in (45 cm)	48 in (120 cm)	4.3 ft	4.3 m
12 in (30 cm)	24 in (60 cm)	24 in (60 cm)	2.4 ft	2.4 m
24 in (60 cm)	24 in (60 cm)	36 in (90 cm)	2.9 ft	2.9 m
36 in (90 cm)	24 in (60 cm)	48 in (120 cm)	3.6 ft	3.6 m

TABLE 4 ICESTOP HEATING CABLE LENGTH FOR SLOPED ROOF – STANDING SEAM

For standing seam roofs without gutters, add 6 inches (0.1 meter) of heating cable for each seam traced to allow for a 2-3 inch (5-8 cm) drip loop to hang off the roof edge as shown in Fig. 10.


For standing seam roofs with gutters, heating cable must be run to the bottom of the gutter. You can determine the amount of extra heating cable required by adding twice the gutter depth per seam traced to the amount determined in Table 4.

Additional heating cable will be needed for component connections and downspouts.

Note: Attachment methods are not shown in Fig. 8. For attachment methods, proceed to "Step 6 Select attachment accessories and method" on page 115.

FLAT ROOF

Ice dams may occur on flat roofs at the edge flashing and at drains. Flat roofs are typically pitched toward drains and these paths often become obstructed by snow and ice. To maintain a continuous path for melt water to run off, route the heating cable as shown in Fig. 9 and follow the appropriate attachment recommendations in "Step 6 Select attachment accessories and method" on page 115. Additional heating cable may be needed for downspouts.

Fig. 9 Layout on a flat roof

- Place heating cable around perimeter.
- Trace valleys from perimeter to drain.
- Extend heating cable into internal downspouts at least 12 inches (30 cm) into heated space.
- External downspouts and scuppers must be treated carefully. A path must be provided for the valley/perimeter heating cable to the point of discharge (see Fig. 17 on page 109).
- To avoid damage, do not walk on the heating cable.

SLOPED ROOF WITHOUT GUTTERS

When gutters are not used on a building, ice dams may form at the roof edge. To maintain a continuous path for melt water to run off, a drip loop or heated drip edge may be used. Drip loops and drip edges allow water to drip free of the roof edge.

Route the heating cable as shown in Fig. 10 or Fig. 11 below and follow the appropriate attachment recommendations in "Step 4 Determine the electrical parameters" on page 110. Additional heating cable may be needed for valleys.

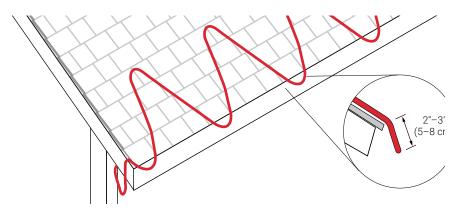


Fig. 10 Layout for heated drip loops

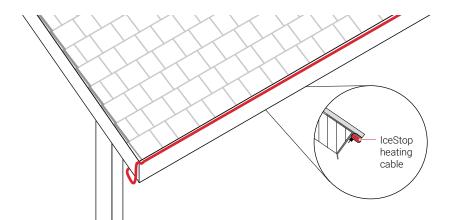
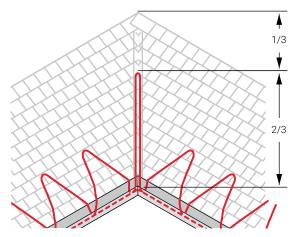


Fig. 11 Layout for heated drip edge


Note: Attachment methods are not shown in the above illustrations. For attachment methods, proceed to "Step 6 Select attachment accessories and method" on page 115.

OTHER CONSIDERATIONS

- Ice will build up on the surfaces below the drip loop or drip edge if gutters are not used.
- Ice may also build up on the vertical surfaces if there isn't a sufficient overhang or if there is a strong wind. Using a gutter system will prevent this ice buildup.

ROOF VALLEYS

Ice dams may form at the valley on a roof where two different slopes meet. To maintain a continuous path for melt water, run the heating cable up and down the valley as shown in Fig. 12 and follow the appropriate attachment recommendations in "Step 6 Select attachment accessories and method" on page 115. Additional heating cable may be needed for the roof surface, gutters, and downspouts.

Fig. 12 Layout for a roof valley

- Trace two-thirds of the way up each valley with a double run of heating cable (loop up and back once).
- The heating cable must extend into the gutter. If you don't have gutters, the heating cable should extend over the edge 2 to 3 inches (5 to 8 cm) to form a drip loop.
- For attachment methods, proceed to "Step 6 Select attachment accessories and method" on page 115.

ROOF/WALL INTERSECTIONS

Roof/wall intersections can be treated in the same manner as valleys. Snow has a tendency to collect at this interface. Providing a loop of heating cable two-thirds of the way up the slope will provide a path for the extra melt water in this area to escape.

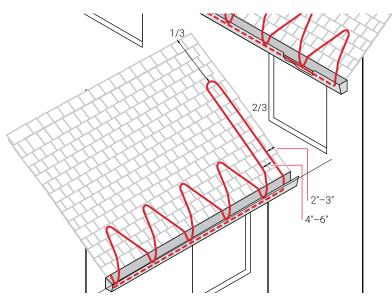
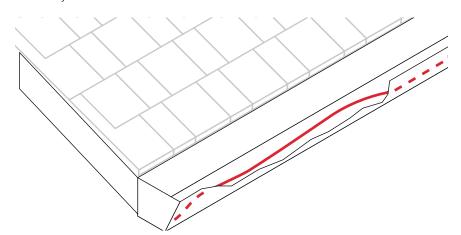



Fig. 13 Layout for a roof/wall intersection.

- Extend a loop of heating cable two-thirds of the way up the slope adjacent to the wall.
- Position the closest heating cable approximately 2 to 3 inches (5 to 8 cm) from the wall. Position the second heating cable 4 to 6 inches (10 to 16 cm) from the first.

GUTTERS

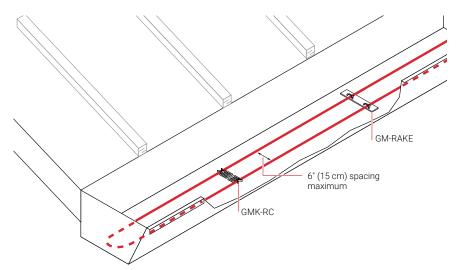
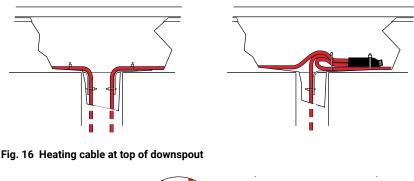
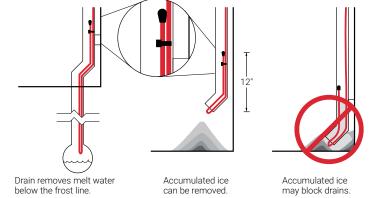

Ice may accumulate in gutters and at the roof edge. To maintain a continuous path for melt water to run off, route the heating cable as shown in Fig. 14 below. Additional heating cable may be needed for the roof surface, downspouts, and valleys.

Fig. 14 Layout in standard gutters - up to 6" (16 cm) wide

- Use one run of heating cable in the gutter.
- No attachment to gutter is normally required. If attachment is desired, use a roof clip such as a RAYCHEM GMK-RC clip.
- Continue heating cable down the inside of the downspout. See "Downspouts," page 109, for more information.

In wide gutters, snow and ice can bridge over the tunnel created by a single heating cable and prevent melt water from getting into the gutter and downspouts. To maintain a continuous path for melt water to run off, run the heating cable in the gutter as shown in Fig. 15 below and follow the appropriate attachment recommendations in "Step 6 Select attachment accessories and method" on page 115. Additional heating cable may be needed for the roof surface, downspouts, and valleys.




Fig. 15 Layout in wide gutters - 6" to 12" (16 to 31 cm) wide

- Use two parallel runs of heating cable. Separate the two runs of heating cable with a pair of GMK-RC clips or a single GM-RAKE downspout hanger bracket.
- No attachment to the gutter is normally required. If attachment is desired, use a GMK-RC with appropriate adhesive.
- Continue heating cable down the inside of the downspout. See "Downspouts," page 109 for more information.

DOWNSPOUTS

Ice may form in downspouts and prevent melt water from escaping from the roof. To maintain a continuous path for melt water to run off, run the heating cable inside the downspout to the end as shown in Fig. 16 and Fig. 17 below. Follow the appropriate attachment recommendations in "Step 6 Select attachment accessories and method" on page 115. Additional heating cable may be needed for the roof surface, gutters, and valleys.

Fig. 17 Heating cable at bottom of downspout

- If the downspout ends underground, the heating cable should extend into a heated area or below the frost line.
- For low water-flow situations, teeing the heating cable so that a single run goes down the downspout is usually sufficient. For high water-flow situations, where ambient temperatures often fall below -10° F (-23° C), or where it isn't convenient to tee the heating cable, use two runs by running the heating cable down to the bottom and then back to the top.
- Leave drip loops below the downspout at bottom.
- If a single run of heating cable is used, the end seal should be looped back up at least 12 inches (30 cm) inside the downspout.
- If the downspout ends near the ground, water will refreeze on the ground and build up around the downspout, eventually blocking the opening.

WARNING: To prevent mechanical damage, do not leave the end seal exposed at the end of the downspout.

Example: Roof and Gutter De-Icing Syster
--

Example. Roof and	Sutter Deficing System
Type of roof	Sloped roof – standard with wood shingles and gutters (from Step 1)
Layout	
Roof edge	100 ft (30.5 m) (from Step 1)
Eave overhang	24 inch (60 cm) (from Step 1) Requires 4.2 ft of heating cable per foot of roof edge (4.2 m per meter of roof edge). See Table 2.
Gutters	
Length	100 ft (30.5 m) (from Step 1)
	= 100 ft (30.5 m) heating cable
Depth	6 in (11 cm) x 2 (from Step 1) = 1 foot of additional heating cable 4.2 ft + 1 ft = 5.2 ft x 100 ft
	= 520 ft (158.5 m) heating cable
Width	4 in (from Step 1)
	therefore single run of heating cable at indicated gutter length
Roof valley	20 ft (6.1 m) (from Step 1) x 1.33 = 26.6 = rounded to 27 ft (8.3 m) heating cable
Downspouts	Two 12 ft (3.7 m) (from Step 1)
	= 26 ft (8.0 m) heating cable
	(Single runs in each downspout with 1 ft (0.3 m) loop back from bottom)
Total heating cable	length 673 ft (205.2 m)

Additional heating cable will be required for connection kits. After determining kit requirements, heating cable allowances for each will be added to total heating cable length for Bill of Materials.

	Roof and Gutter De-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits
6.	Select attachment accessories and method
7.	Select the control system and power distribution
8.	Complete the Bill of Materials

Step 4 Determine the electrical parameters

This section will help you determine the electrical parameters for an IceStop system including circuit breaker sizing and maximum circuit length. Total required heating cable length divided by maximum heating cable circuit length will determine the number of circuits required for your snow melting solution.

DETERMINE MAXIMUM CIRCUIT LENGTH

To determine maximum circuit length, it is important to establish a minimum startup temperature for the system. Table 5 provides maximum circuit lengths based on minimum startup temperature, circuit breaker rating and supply voltage. Colder temperature startup requires shorter maximum circuit lengths. The use of an automatic system, which energizes the system above $20^{\circ}F(-7^{\circ}C)$, ensures that you can use maximum circuit lengths. Manual control systems may require you to use shorter circuit lengths to compensate for startup below $20^{\circ}F(-7^{\circ}C)$.

Select the smallest appropriate circuit breaker size. A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers.

TABLE 5 MAXIMUM CIRCUIT LENGTH IN FEET (METERS)

	Start-up	Circuit breaker size					Мах				
Heating cable	temperature		15 A		20 A		30 A		40 A ¹	A/ft (A/	
GM-1X and -1XT at	32°F (0°C)	100	(30)	135	(41)	200	(61)	-		0.120 (0.	394)
120 V	20°F (-7°C)	95	(29)	125	(38)	185	(56)	200	(61)	0.126 (0.	414)
	0°F (-18°C)	80	(24)	100	(30)	155	(47)	200	(61)	0.150 (0.	492)
GM-2X and -2XT at	32°F (0°C)	190	(58)	250	(76)	380	(116)	-		0.063 (0.	207)
208 V	20°F (-7°C)	180	(55)	235	(72)	355	(108)	380	(116)	0.067 (0.	220)
	0°F (-18°C)	145	(44)	195	(59)	290	(88)	380	(116)	0.083 (0.	272)
GM-2X and -2XT at	32°F (0°C)	200	(61)	265	(81)	400	(122)	_		0.060 (0.	197)
240 V	20°F (-7°C)	190	(58)	250	(76)	370	(113)	400	(122)	0.063 (0.	207)
	0°F (-18°C)	155	(47)	205	(62)	305	(93)	400	(122)	0.077 (0.	253)
GM-2X and -2XT at	32°F (0°C)	215	(66)	290	(88)	415	(126)	-		0.056 (0.	184)
277 V	20°F (-7°C)	200	(61)	265	(81)	400	(122)	415	(126)	0.060 (0.	197)
	0°F (-18°C)	165	(50)	225	(69)	330	(101)	415	(126)	0.073 (0.	240)

¹ Only FTC-P power connection, FTC-HST splice/tee, and RayClic-E end kits may be used with 40-A circuits.

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Example: Roof and Gutter De-Icing System

Startup temperature	20°F (–7°C) (from Step 1)
Circuit breakers	30 A
Supply voltage	208 V (from Step 1)
Maximum circuit length	355 ft (108 m) (from Table 5)

DETERMINE NUMBER OF CIRCUITS

Use the following formula to determine number of circuits for the system:

Number of circuits =	Heating cable length required		
	Maximum heating cable circuit length		

Example: Roof and Gutter De-Icing System

Total heating cable length	673 ft (205.2 m) (from Step 3)
Maximum circuit length	355 ft (108 m) (from above)
Number of circuits	673 ft / 355 ft = 1.9 rounded to 2 circuits

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of load on all the circuit breakers in the system.

Calculate the Circuit Breaker Load (CBL) as:

CBL (kW) = CBL (kW) =

1000

If the CBL is equal on all circuit breakers, calculate the Total Transformer Load as follows:

Total Transformer Load (kW) = CBL x Number of circuits

If the CBL is **not** equal on all circuit breakers, calculate the Total Transformer Load as follows:

Total Transformer Load (kW) = $CBL_1 + CBL_2 + CBL_3... + CBL_N$

Example: Roof and Gutter De-Icing System

Circuit breaker load (CBL)	= (30 A x 0.8 x 208 V) / 1000 = 5 kW
Total transformer load	= 5 kW x 2 circuits = 10 kW

	Roof and Gutter De-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the heating cable length
4.	Determine the electrical parameters
5.	Select the connection kits
6.	Select attachment accessories and method
7.	Select the control system and power distribution
8.	Complete the Bill of Materials

Step 5 Select the connection kits

A typical lceStop system may have several connection kits to seal and power the heating cable. The connection kits work together with the lceStop heating cable to provide a safe and reliable de-icing system that is easy to install and maintain. The available accessories are listed in Table 6. A complete lceStop system also consists of attachment accessories and adhesives which we discuss later in "Step 6 Select attachment accessories and method" on page 115.

The self-regulating lceStop heating cable is cut to length at the job site. In order to seal the heating cable from the environment and provide power, nVent approved connection kits must be used. A power connection kit is required to attach power to one end of the heating cable. An end seal is required, and is provided with each power connection to seal the other end. Splice and tee kits are also available to connect two or three heating cables together.

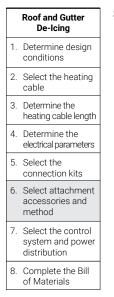
RayClic and FTC connection kits are available for the IceStop system. The RayClic connection kits are insulation-displacement quick connect systems. The FTC connection kits use heat-shrinkable tubing and crimp barrels. All of these connection kits are outlined in Table 6 below. Additional heating cable will be required to allow for connection kit assembly and drip loops.

TABLE 6 CONNECTION KITS

	Catalog number	Description	Standard packaging	Usage	Heating cable allowance ¹
Connection kits					
	RayClic-PC	Power connection and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	2 ft (0.6 m)
	RayClic-PS	Powered splice and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	4 ft (1.2 m)
TE CO	RayClic-PT	Powered tee and end seal (RayClic-SB-04 pipe mounting bracket included)	1	1 per circuit	6 ft (1.8 m)
	FTC-P ²	Power connection and end seal Note: FTC-P is required for circuits requiring 40 A circuit breakers.	1	1 per circuit	2 ft (0.6 m)
	RayClic-S	Splice	1	As required	2 ft (0.6 m)
	RayClic-T	Tee kit with end seal	1	As required	3 ft (0.9 m)
	RayClic-X	Cross connection to connect four heating cables	1	As required	8 ft (2.4 m)
A CONTRACT OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNE	FTC-HST ³	Low-profile splice/tee	2	As required	2 ft (0.6 m)
a line the	[≈] RayClic-LE	Lighted end seal (RayClic-SB-04 pipe mounting bracket included)	1	Alternate end seal	2 ft (0.6 m)
	RayClic-E	Extra end seal	1	Additional end seal	0.3 ft (0.1 m)
Accessories					
	RayClic-SB-02	Wall mounting bracket	1	Required for every RayClic connection kit	-

 $^{\scriptscriptstyle 1}$ Additional heating cable required for connection kit assembly and drip loops.

² Junction box not included.
 ³ One RayClic-E end seal is required for each FTC-HST used as a tee kit.


Example: Roof and Gutter De-Icing System

Connection kit	Quantity	Heating cable allowance
RayClic-PC	2	4 ft (1.2 m)
RayClic-PS	2	8 ft (2.4 m)
RayClic-SB-02	4	NA

Determine how much additional heating cable you need for the connection kits.

Example: Roof and Gutter De-Icing System

Sloped roof – standard	520 ft (158.5 m)
Gutters	100 ft (30.5 m)
Roof valley	27 ft (8.3 m)
Downspouts	26 ft (8.0 m)
Total heating cable allowance for connection kits	12 ft (4.0 m)
Total heating cable length required	685 ft (208.8 m)

Step 6 Select attachment accessories and method

A typical lceStop system also consists of various attachment accessories and adhesives for attaching the heating cable to the roof. The available accessories are listed in Table 7 and the adhesives in Table 9. The type of attachment accessories you need will depend on the type of roof you have. See Table 8 for details.

Always check with the roofing manufacturer for recommendations on how to attaching heating cables to their roofing material.

TABLE 7 ATTACHMENT ACCESSORIES

Catalog number	Description	Standard packaging	Usage	Heating cable allowance
GMK-RC	Roof clips	50/box	1 box per 35' of roof edge when zig-zag layout is used. See Table 8 for other layout options.	_
GMK-RAKE	Hanger bracket	1	1 hanger per cable in down- spout or as required for mechanical protection. See Table 8 for other layout options.	-
CT-CABLE-TIE	UV-resistant cable tie	100/box	As required.	-
CCB-CU CCB-AL	Cable cover bracket, copper or aluminum	1	As required.	-

Heating cable attachment depends primarily upon the roof type. The following table shows the recommended attachment methods for typical roof materials and roof areas.

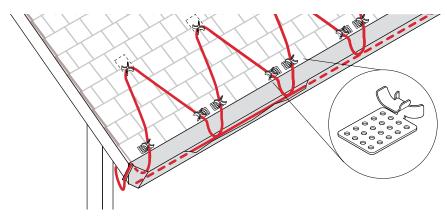
TABLE 8 ATTACHMENT METHODS FOR TYPICAL ROOFS

Roof material	Recommended attachment method	Alternate attachment method
Shake/shingle	"Mechanical Attachment," page 117	
Rubber/membrane	"Belt Loop Approach," page 118	"Adhesive Attachment," page 117
Metal	"Mechanical Attachment," page 117	"Adhesive Attachment," page 117 "Belt Loop Approach," page 118
Wood	"Mechanical Attachment," page 117	
Other	"Attachment Methods for Other Areas," page 119	
Area	Attachment method	
Area Gutters	Attachment method Recommend using hanger clips glued to gutter for security if possible (see page 119)	
	Recommend using hanger clips glued to gutter for security if possible	
Gutters	Recommend using hanger clips glued to gutter for security if possible (see page 119) Downspout hangers	
Gutters Downspouts	Recommend using hanger clips glued to gutter for security if possible (see page 119) Downspout hangers (page 119) Attached to a flat sheet or standard drip edge, or installed informed sheet	

Note: Do not use adhesives on slate or tile roofs. Please contact roofing manufacturer for a recommended attachment method or contact your nVent representative.

Adhesive is not supplied by nVent. Follow manufacturer's instructions for surface preparation and installation.

TABLE 9 ADHESIVES


Adhesive	Description	Color	Approximate tooling time	Cure time	Dispensing equipment
Momentive Performance Materials, Inc. RTV167	Neutral-cure silicone adhesive	Gray	20 minutes	48 hours	Caulking gun
SpeedBonder [®] H3300	Methacrylate adhesive	Tan	15 minutes	24 hours	2 part mixing dispenser
SpeedBonder H4800	Methacrylate adhesive	Light yellow	45 minutes	24 hours	2 part mixing dispenser
Plexus [®] MA300	Methacrylate adhesive	Yellow	15 minutes	16 hours	2 part mixing dispenser
Plexus MA310	Methacrylate adhesive	Yellow	30 minutes	16 hours	2 part mixing dispenser

Note: Before using adhesives on metal roofs check with the roofing manufacturer. Trademarks are the property of their respective owners.

ROOF ATTACHMENT METHODS

Mechanical Attachment

One of the most common attachment methods is to use RAYCHEM GMK-RC roof clips. It can be used on all surfaces where nails or screws are acceptable.

Fig. 18 GMK-RC clip attachment

- The GMK-RC roof clips are used to secure IceStop heating cable. This multipurpose bracket attaches with a screw, nail, or adhesive to many types of roofs and gutters.
- One box of 50 GMK-RC roof clips is sufficient to attach the heating cable on 35 feet (9.1 m) of roof edge using a zig-zag layout. Your layout may require additional clips.
- For layouts other than the standard zig-zag, use one clip for each 5 to 10 feet (1.5 to 3 m) of unsupported heating cable and at every change of heating cable direction.
- For standard sloped roofs, the loops of heating cable being zig-zag on the roof should be attached using a UV-resistant cable tie to the heating cable run in the gutter.
- For standing-seam roofs, the heating cable should be cable-tied together at the bottom of the seam.
- For high wind areas, it is recommended to use a UV resistant cable tie to further secure the heating cable to the attachment clip.

Adhesive Attachment

For roofs where penetrating attachments are not desired, use the GMK-RC roof clip attached by adhesive.

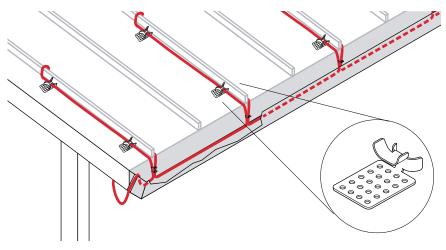
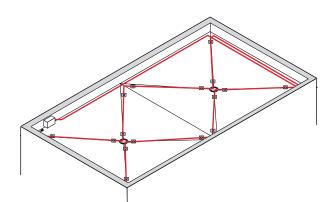



Fig. 19 GMK-RC clip on standing-seam roof

Fig. 20 GMK-RC clip on flat roof

- The GMK-RC roof clips are used to secure lceStop heating cable. The clip attaches with adhesive (not supplied by nVent) to many types of roofs and gutters.
- Several different adhesives are recommended by nVent. See Table 9 on page 116 or contact nVent for alternatives.
- On a standing seam roof, use four clips on each seam being traced. On a flat surface, use one clip for every 5 to 10 feet (1.5 to 3 m) of unsupported heating cable and at every change of direction.
- Follow all recommendations from the adhesive manufacturer with regard to cleaning and preparing the roof surface for the adhesive.

Belt Loop Approach

With the belt loop approach, strips of roofing materials are fastened to the roof using standard means for that particular type of roof. The heating cable is attached with a UV-resistant cable tie to the loop formed by this material.

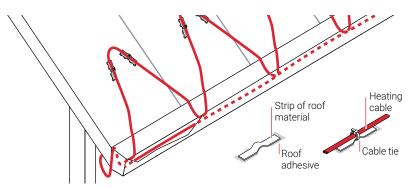


Fig. 21 Belt loop approach on a sloped roof

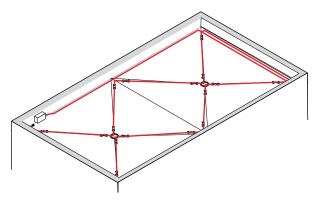
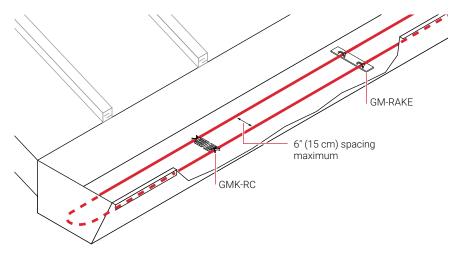


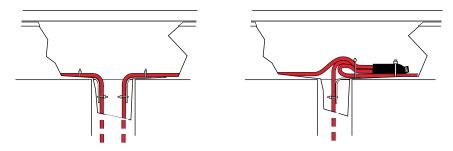
Fig. 22 Belt loop approach on a flat roof


- The belt loop method of securing the IceStop heating cable involves using a small piece of roofing material to form a "belt loop."
- Use at least one belt loop for every 5 to 10 feet (1.5 to 3 m) of unsupported heating cable and at every heating cable change of direction.

ATTACHMENT METHODS FOR OTHER AREAS

Gutters

Attachment is not generally required for standard gutters. If attachment is desired, such as in high-wind areas, use GMK-RC adhesive-mounted attachment clips. Several different adhesives are recommended by nVent. See Table 9 on page 116.


For large gutters (6 to 12 inches wide [15 cm to 30 cm]), use two runs of heating cable separated by GMK-RC roof clips. It is not necessary to attach the clips to the gutter. Use one pair of GMK-RC roof clips for every 10 feet (3 m).

Downspouts

The IceStop heating cable needs to be attached at the top of each downspout, using one GM-RAKE downspout hanger per heating cable. The GM-RAKE downspout hanger clamps around the heating cable and attaches to the fascia with a screw or nail.

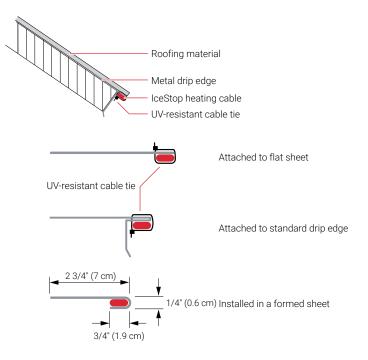


Fig. 24 GM-RAKE downspout hangers

- GM-RAKE downspout hangers protect the heating cable from damage from sharp edges and also provide support for the weight of the heating cable.
- Use two GM-RAKE downspout hangers for double-traced downspouts.
- Attach the GM-RAKE downspout hangers to the structure with a nail or other suitable method.

Heated Drip Edges

When installing a heated drip edge, you can attach the heating cable to the roof's drip edge or to a flat sheet of sheet metal with a UV-resistant cable tie, or place the heating cable in a formed (J-channel) piece of sheet metal.

Fig. 25 Heated drip edge attachment guidelines

- The illustrations above are guidelines for heating cable attachment in a heated drip edge application. nVent does not manufacture drip edge attachment clips.
- · Use 20-gauge or thicker corrosion-resistant sheet metal.
- Contact your nVent representative or nVent directly for specific recommendations.

Example: Roof and Gutter De-Icing System

100 ft (30.5 m) roof edge and 2 gutters	
GMK-RC	3 boxes of 50
GM-RAKE	2

De-Icing -	Root and
lceStop	Gutter

Roof and Gutter De-Icing 1. Determine design conditions 2. Select the heating cable 3. Determine the heating cable length 4. Determine the electrical parameters 5. Select the connection kits 6. Select attachment accessories and method 7. Select the control system and power distribution 8. Complete the Bill of Materials

Step Select the control system and power distribution

Control Systems

Three control methods are commonly used with roof de-icing systems: • Manual on/off control

- Ambient thermostat
- · Automatic moisture/temperature controller

All three methods require contactors if any significant length of heating cable is being used. The contactor must be sized to carry the load. Each method offers a trade-off of initial cost versus energy efficiency and ability to provide effective de-icing. If the system is not energized when needed, ice will form. If the system is energized when de-icing is not needed, there will be unnecessary power consumption. Choose the control method that best meets the project performance requirements. Contact your nVent representative for details.

For Class I, Division 2 hazardous locations, use an agency-approved controller or thermostat suitable for the same area use.

Manual On/Off Control

A manually controlled system is operated by a switch that controls the system power contactor. This method requires constant supervision to work effectively. A manual system can be controlled by a building management system.

Ambient Thermostat

When an ambient sensing thermostat is used, the roof and gutter system will be energized when the ambient temperature is below freezing. This will ensure the heating cable is energized any time the water might freeze.

TABLE 10 ECW-GF THERMOSTAT

Number of heating cable circuits	Single
Sensor	Thermistor
Sensor length	35 ft
Set point range	32°F to 200°F (0°C to 93°C)
Enclosure	NEMA 4X
Deadband	2°F to 10°F (2°C to 6°C)
Enclosure limits	-40°F to 140°F (-40°C to 60°C)
Switch rating	30 A
Switch type	DPST
Electrical rating	100-277 V
Approvals	c-UL-us Listed
Ground-fault protection	30 mA fixed
Alarm outputs AC relay Dry contact relay	2 A at 277 Vac 2 A at 48 Vdc

Automatic Moisture/Temperature Controller

The most conservative approach from an energy-consumption point of view is an automatic moisture/temperature sensor. nVent supplies an automatic moisture/ temperature sensor, which consists of a control panel, one or more gutter sensors, and one or more aerial snow sensors. Table 11 outlines the options for this approach.

The gutter sensor should be mounted in gutters near downspouts. It senses the actual environmental conditions, such as temperature and moisture. A gutter sensor is recommended for each critical area that needs to be monitored for icing conditions (such as when one side of a building gets sun in the morning and the other side gets sun in the afternoon, or one side gets the prevailing winds and the other side is protected). An aerial-mounted snow sensor is also recommended. Having both gutter and snow sensors allows for snow to begin melting in the gutters at the onset of any snow or ice condition.

For areas where a large number of circuits are required, the RAYCHEM ACS-30 can be used. The Roof & Gutter De-icing control mode in the ACS-30 includes an External Device control option. This option allows a Snow/Moisture sensing controller (from Table 11) to be integrated into the ACS-30 system. Note that sensors (snow or gutter) cannot be directly connected to the ACS-30 system. Refer to the ACS-30 Programming Guide (H58692) for more information on system setup.

Anneltenstein	400.00	100.40	00.400		
Application	APS-3C	APS-4C	SC-40C	PD Pro	GF Pro
	Snow controller	Snow controller with ground-fault protection	Satellite contactor	Snow controller	Snow controller with ground-fault protection
Number of sensors	1 to 6	1 to 6	1 to 6	1 to 2	1 to 2
Set point	38°F (3°C) and moisture	38°F (3°C) and moisture	38°F (3°C) and moisture	38°F (3°C) and moisture	38°F (3°C) and moisture
High limit temperature set point	40°F to 90°F (4°C to 32°C) adjustable	40°F to 90°F (4°C to 32°C) adjustable	40°F to 90°F (4°C to 32°C) adjustable	NA	NA
Enclosure	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 4X	NEMA 4X
Temperature operating limits	-40°F to 160°F (-40°C to 71°C)	−40°F to 160°F (−40°C to 71°C)	−40°F to 160°F (−40°C to 71°C)	−31°F to 130°F (−35°C to 55°C)	−31°F to 130°F (−35°C to 55°C)
Electrical rating	24 A, 120 V 24 A, 208–240 V	50 A, 208–240 V 40 A, 277 V 50 A, 277–480 V 50 A, 600 V	50 A, 208/240 V 40 A, 277 V 50 A, 277–480 V 50 A, 600 V	30 A, 120 V	30 A, 208-277 V
Approvals	c-UL-us Listed	c-UL-us Listed	c-UL-us Listed	c-UL-us Listed	c-UL-us Listed
Ground-fault protection	Not included	30 mA	30 mA, 60 mA and 120 mA	Not included	30 mA

TABLE 11 AUTOMATIC CONTROLLERS

TABLE 12 MOISTURE/TEMPERATURE SENSORS

Application	GIT-1	CIT-1
	Gutter-mounted moisture/temperature	Aerial-mounted moisture/temperature
Set point	38°F (3°C)	38°F (3°C)

TABLE 13 CONTROL SYSTEMS

	Catalog number	Description
Electronic Thermost	ats and Accessorie	S
	ECW-GF	Electronic ambient sensing controller with 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a NEMA 4X rated enclosure. The controller features an AC/DC dry alarm contact relay.
* ****	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
Snow Melting Contro	ollers	
	APS-3C	Automatic snow melting controller housed in a NEMA 3R enclosure provides effective, economical automatic control of all snow melting applications. CSA Certified, c-UL-us Listed, available in 120 V and 208-240 V, 50/60 Hz models, 24-Amp DPDT output relay, adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm)
	APS-4C	Automatic snow melting controller housed in a NEMA 3R enclosure provides effective, economical automatic control of all snow melting applications. The APS-4C can operate with any number of SC-40C satellite contactors for larger loads. Features include: 277 V single-phase or 208–240, 277/480, and 600 V three-phase models, built-in 3-pole contactor, integral 30 mA ground-fault circuit interrupter and an adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in
· ·		(292 mm x 232 mm x 167 mm)
	SC-40C	Satellite contactor power control peripheral for an APS-4C snow melting controller, housed in a NEMA 3R enclosure. Features include: 277 V single-phase or 208–240, 277/480 and 600 V three-phase models, built-in 3-pole contactor and integral 30 mA ground-fault circuit interrupter. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6 in (292 mm x 232 mm x 152 mm)
Gutter De-Icing Cont	trollers	
	PD Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The PD Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The PD Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds.
	GF Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The GF Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The GF Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds. Features a built-in 30 mA, self-testing Ground-Fault Equipment Protection (GFEP) capability, digitally filtered to minimize false tripping. A ground-fault alarm must be manually reset using the Test/Reset switch before heater operation can continue.

TABLE 13CONTROL SYSTEMS

	Catalog number	Description
Snow Melting and G	utter De-Icing Sens	ors and Accessories
	CIT-1	Overhead snow sensor that detects precipitation or blowing snow at ambient temperatures below 38°F (3.3°C). For use with an APS-3C or APS-4C automatic snow controller, or an SC-40C satellite contactor.
	GIT-1	Gutter sensor that detects moisture at ambient temperatures below 38°F (3.3°C). For use with an APS-3C or APS-4C automatic snow controller, or a SC-40C satellite contactor.
	RCU-3	The RCU–3 provides control and status display to the APS–3C controller from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of APS-3C setting.
	RCU-4	The RCU–4 provides control and status display to the APS–4C controller and SC-40C Satellite Contactor from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of the APS-4C or SC-40C setting.
Electronic Controlle	rs	
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in various commercial applications such as pipe freeze protection, roof and gutter de-icing, surface snow melting, hot water temperature maintenance and floor heating. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electro-mechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers.
	RTD-200 RTD3CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers.
	RTD10CS RTD50CS	RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing
		RTD3CS: temperature sensor with a 3-ft (0.9 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing
		RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing

Example: Roof and Gutter De-Icing System

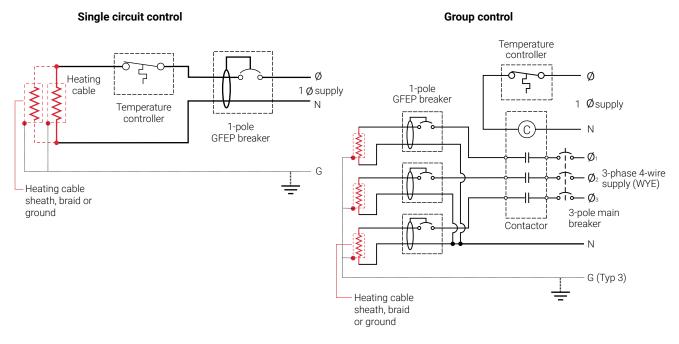
208 V system with 2 circuits	
APS-4C	1
SC-40C	1
GIT-1	2 (one for each gutter section)
CIT-1	1

POWER DISTRIBUTION

Once the heating cable circuits and control have been defined, you must select how to provide power to them. Power to the IceStop heating cables can be provided in several ways: directly through the controller, through external contactors, or through SMPG power distribution panels.

Single circuit control

Heating cable circuits that do not exceed the current rating of the selected control device shown in Table 11 can be switched directly (see Fig. 26).


Group control

If the current draw exceeds the switch rating, or if the controller will activate more than one circuit (group control), an external contactor must be used.

Note: Large systems with many circuits should use an SMPG power distribution panel. The SMPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for roof and gutter de-icing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with an ambient-sensing thermostat, individual electronic, or duty cycle controller.

TABLE 14 POWER DISTRIBUTION PANELS

Application	SMPG1
	Control panel
Controller	EUR-5A included
Number of sensors	Up to 6
Enclosure	NEMA 1/12, NEMA 3R/4
Temperature operating limits	Without space heater 14°F to 122°F (-10°C to 50°C) With a space heater -40°F to 122°F (-40°C to 50°C)
Supply voltage	208 V, 277 V
Circuit breaker rating	15 A, 20 A, 30 A, 40 A, 50 A
Approvals	c-UL-us
Ground-fault protection	Yes

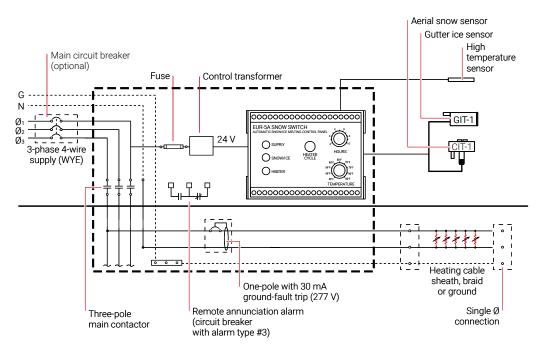


Fig. 27 Typical wiring diagram of group control with SMPG1

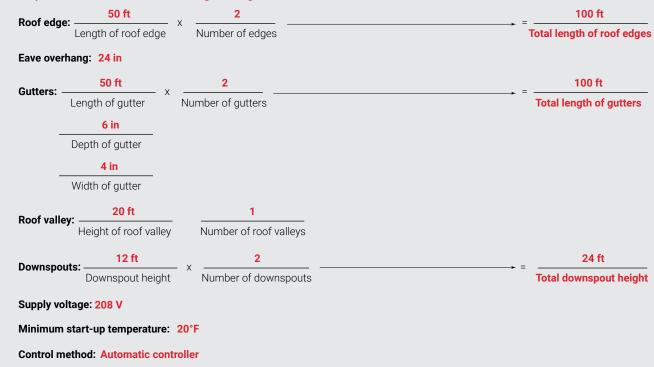
TABLE 15 POWER DISTRIBUTION

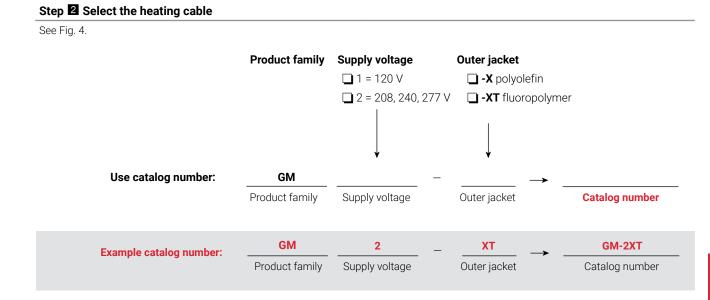
Catalog number	Description
Power Distribution and Control Panels	
SMPG1	Single-phase power distribution panel that includes ground-fault protection, monitoring, and control for snow melting systems. Single-phase voltages include 208 and 277 V.

Roof and Gutter De-Icing 1. Determine design conditions 2. Select the heating cable 3. Determine the heating cable length 4. Determine the electrical parameters 5. Select the connection kits 6. Select attachment accessories and method 7. Select the control system and power distribution 8. Complete the Bill of Materials

Step Complete the Bill of Materials

If you used the Design Worksheet to document all your project parameters, you should have all the details you need to complete your Bill of Materials.


ICESTOP SYSTEM ROOF AND GUTTER DE-ICING DESIGN WORKSHEET


Step Determine design conditions

Type of roof	Layout	Supply voltage	Min. start-up temperature	Control method
 Sloped roof - standard Sloped roof - standing seam Flat roof Roof material Shake/shingle Rubber membrane Metal Wood Other:	Roof edge Length of roof edge (ft/m) Number of edges Eave overhang Distance of overhang (in/cm) Gutters Length of gutters (ft/m) Number of gutters (ft/m) Number of gutters (in/cm) Width of gutters (in/cm) Width of gutters (in/cm) Roof valley Height of roof valley (ft/m) Number of roof valleys Roof/wall intersection Height of intersection (ft/m) Number of intersections Downspouts Downspout height (ft/m) Number of downspouts	 □ 120 V □ 208-277 V 	(°F/°C)	 Manual on/ off control Ambient thermostat Automatic controller

Example:

✓ Sloped roof – standard with wood shingles and gutters

ROOF AND GUTTER DE-ICING - ICESTOP SYSTEM

Sloped roof - standard		
Roof edge (ft/m) With Eave overhang (in/cm) - requires -		→ Heating cable per foot of roof edge
Sloped roof - standing seam		(ft/m)
Roof edge (ft/m) Eave overhang (in/cm) requires		→
Flat roof		(ft/m)
X X X -		=
	nto internal downspouts (ft/m)	Heating cable for flat roof (ft/m)
Gutters x 2 = +		=
Gutter depth (ft/m) Additional heating cable (ft/m)	Heating cable per foot of roof edge (ft/m)	Heating cable with gutter depth allowance (ft/m) =
Roof edge (ft/m) X Heating cable with gutter depth allow		Total heating cable for roof edge (ft/m)
Gutter length (ft/m) Gutter width multiplier		Heating cable for gutters (ft/m)
No gutters – heated drip edge		
Roof edge (ft/m) x 1		→ =
Roof valleys		
Height of roof valley (ft/m) X 1.33 X - Number of roof valleys		\rightarrow = Heating cable for roof valleys (ft/m)
Roof/wall intersection		Treating cable for foor valleys (17,11)
x 1.33		÷
Height of intersection (ft/m) Number of intersections		Heating cable for roof/wall intersections (ft/m)
Downspouts X X		_ =
Height of downspouts (ft/m) Number of downspouts	Runs of heating cable per downspout	Heating cable per downspout (ft/m)
		Total heating cable length
Example: Sloped roof – standard with eave overhang and gutt	ters	105
<u>100 ft</u> with <u>24 in</u> requires		→ <u>4.2 ft</u>
Feet of roof edge (ft/m) Eave overhang (in/cm)	4.2.4	Heating cable per foot of roof edge (ft/m)
$\frac{6 \text{ in }}{C \text{ where depth } (ft(m))} \times 2 = \frac{1 \text{ ft}}{4 \text{ diffinal begins apple} (ft(m))} + \frac{1}{2} $	4.2 ft Heating cable per foot	= 5.2 ft Heating cable with gutter
Gutter depth (ft/m) Additional heating cable (ft/m)	of roof edge (ft/m)	depth allowance (ft/m)
100 ft 5.2 ft		_ 520 ft *
Roof edge (ft/m) X Heating cable with gutter depth allowance (ft/m)		Total heating cable for roof edge (ft/m
100 ft X1		100 ft *
Gutter length (ft/m) Gutter width multiplier		Heating cable for gutters (ft/m)
20 ft 1		26.6 ft rounded to 27 ft *
Height of roof valley (ft/m) X 1.33 X Number of roof valleys		→ = Heating cable for roof valleys (ft/m)
12 ft 2	1	24 ft
Height of downspouts (ft/m) X Number of downspouts X	Runs of heating cable per downspout	Heating cable per downspouts (ft/m)
	2	26 ft *
+	Drip loop allowance	Feet heating cable for downspouts
	(1 ft with loopback)	673 ft

Step Determine the heating cable length

termine maximum c	ircuit length and number of circuits	(See Table 5)	
Total heating cable length required	Supply voltage:	□120 V □208 V □240 V □277 V	Start-up temperature
	Circuit breaker size:	□15 A □20 A □30 A □40 A	Maximum circuit length
	Total heating cable length required	 Maximum heating cable (circuit length Number of circuits
Determine transforme	r load		
Calculate the circuit b	reaker load (CBL)		
(× 0.8 ×)/1000		
Circuit breaker rating	x 0.8 x) / 1000 ·		Circuit breaker load (kW
If the CBL is equal on	all circuits, calculate the transformer load	d as:	
Circuit breaker load (kV	X V) Number of breakers		Total transformer load (kW
If the CBL is NOT equa	al on all circuits, calculate the transforme	r load as:	
			=
$CBL_1 + CBL_2 + CBI$	_ ₃ + CBL _N		Total transformer load (kW
Example:			
Determine the maximu	um circuit length and number of circuits		
Determine the maximum Total heating cable length required	um circuit length and number of circuits 673 ft of GM-2XT Supply voltage	2: □ 120 V	Start-up temperature 20°F
Total heating cable		□ 240 V □ 277 V	Start-up temperature 20°F Maximum circuit length 355 ft
Total heating cable	673 ft of GM-2XT Supply voltage	^{2.} □240 V □277 V . □15 A □20 A	Maximum circuit length <u>355 ft</u>
Total heating cable	673 ft of GM-2XT Supply voltage Circuit breaker size: 673 ft /	2. □240 V □277 V □15 A □20 A ☑30 A □40 A	Maximum circuit length <u>355 ft</u>
Total heating cable	673 ft of GM-2XT Supply voltage Circuit breaker size: 673 ft 673 ft / Total heating cable length required /	2. □240 V □277 V □15 A □20 A 1. 30 A □40 A 355 ft	Maximum circuit length <u>355 ft</u>
Total heating cable length required Determine transforme	673 ft of GM-2XT Supply voltage Circuit breaker size: 673 ft / Total heating cable length required r Ioad	2. □ 240 V □ 277 V □ 15 A □ 20 A ☑ 30 A □ 40 A 355 ft Maximum heating cable	Maximum circuit length <u>355 ft</u> = <u>1.9 circuits, round up to 2</u> circuit length Number of circuits
Total heating cable length required Determine transforme	673 ft of GM-2XT Supply voltage Circuit breaker size: 673 ft 673 ft / Total heating cable length required /	2. □ 240 V □ 277 V □ 15 A □ 20 A ☑ 30 A □ 40 A 355 ft Maximum heating cable	Maximum circuit length <u>355 ft</u> = <u>1.9 circuits, round up to 2</u> circuit length Number of circuits
Total heating cable length required Determine transforme	673 ft of GM-2XT Supply voltage Circuit breaker size: 673 ft / Total heating cable length required / r load x 0.8 x $\frac{208 V}{Supply voltage}$ / 1000-	2. □ 240 V □ 277 V □ 15 A □ 20 A ☑ 30 A □ 40 A 355 ft Maximum heating cable	Maximum circuit length <u>355 ft</u> = <u>1.9 circuits, round up to 2</u> Number of circuits = <u>4.99 kW rounded to 5 kW</u> Circuit breaker load (kW

Step 5 Select the connection kits (See Table 6)

Connection kits and			Heating cable	
accessories	Description	Quantity	allowance	
RayClic-PC	Power connection and end seal			
RayClic-PS	Power splice and end seal			
RayClic-PT	Powered tee and end seal			
G FTC-P	Power connection and end seal			
RayClic-S	Splice			
RayClic-T	Tee kit with end seal			
RayClic-X	Cross connection			
□ FTC-HST	C-HST Low-profile splice/tee			
RayClic-LE	Lighted end seal			
RayClic-E	E Extra end seal		<u> </u>	
RayClic-SB-02 Wall mounting bracket				

Total heating cable

allowance for connection kits

	Total heating cable length	Total heating cable allowance	for connection kits	Total heating cable length required
Example:				
Connection kit c	atalog number		Quantity	Heating cable allowance
✓ RayClic-PC			2	4 ft
✓ RayClic-PS			2	8 ft
✓ RayClic-SB-02	2		4	NA
				12 ft
				Total heating cable allowance for connection kits
	673 ft	12 ft		685 ft
	Total heating cable length	Total heating cable allowance fo	r connection kits	Total heating cable length required

Step Select attachment accessories and method

See "Table 7 Attachment Accessories" "Table 8 Attachment Methods for Typical Roofs" and "Table 9 Adhesives"

Adhesive is not supplied by nVen	t	
Attachment accessories	Description	Quantity
GMK-RC	Roof clips	
GMK-RAKE	Hanger bracket	
CT-CABLE-TIE	UV-resistant cable tie	
CCB	Cable cover bracket, copper or aluminum	
Example: 100 ft roof edge and 2 gutters ✓ GMK-RC ✓ GM-RAKE		3 boxes of 50 (from Table 7) 2 (from Table 7)

Step **Z** Select the control system and power distribution

Control Systems

See "Table 10 ECW-GF Thermostat" "Table 11 Automatic Controllers" "Table 12 Moisture/Temperature Sensors" "Table 13 Control Systems"

Thermostats, controllers and accessories	Description	Quantity
L ECW-GF	Electronic thermostat with 25-ft sensor	
APS-3C	Automatic snow melting controller	
APS-4C	Automatic snow melting controller	
□ SC-40C	Satellite contactor	
D PD Pro	Gutter de-icing controller	
GF Pro	Gutter de-icing controller	
CIT-1	Overhead snow sensor	
GIT-1	Gutter sensor	
RCU-3	Remote control unit for APS-3C	
RCU-4	Remote control unit for APS-4C	
ACS-UIT2	ACS-30 user interface terminal	
ACS-PCM2-5	ACS-30 power control panel	
ProtoNode-RER	Multi-protocol gateway	
RTD3CS	Resistance temperature device for RAYCHEM ACS-30	
RTD10CS	Resistance temperature device for RAYCHEM ACS-30	
□ RTD200	Resistance temperature device for RAYCHEM ACS-30	
□ RTD50CS	Resistance temperature device for RAYCHEM ACS-30	
EXAMPLE:		
Supply voltage	208 V (from Step 1)	
Controller(s)	✓ APS-4C ✓ SC-40C	1 1
Snow melting and gutter de-icing sensors and accessories	✓ GIT-1 ✓ CIT-1	2 (one for each gutter section) 1
Power distribution See "Table 14 Power Distribution Pane	els" and "Table 15 Power Distribution"	

Power distribution and control panels	Description	Quantity	
SMPG1	Single-phase power distribution panel		

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

SURFACE SNOW MELTING – MI MINERAL INSULATED HEATING CABLE SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM Mineral Insulated heating cable surface snow melting system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	135
How to Use this Guide	
Safety Guidelines	
Warranty	
SYSTEM OVERVIEW	137
Typical System	
MI Heating Cable Construction	
MI Heating Cable Configuration	
Approvals	139
SURFACE SNOW MELTING APPLICATIONS	
SURFACE SNOW MELTING DESIGN	
Design Step by Step	140
Step 1 Determine design conditions	
Step 2 Determine the required watt density	143
Step 3 Determine the total area to be protected	144
Step 4 Select the heating cable	149
Step 5 Determine heating cable spacing	
Step 6 Determine the electrical parameters	158
Step 7 Select the control system and power distribution	
Step 8 Select the accessories	
Step 9 Complete the Bill of Materials	170
RAYCHEM MI SYSTEM SURFACE SNOW MELTING	
DESIGN WORKSHEET	171

INTRODUCTION

The RAYCHEM Mineral Insulated (MI) heating cable system is designed for surface snow melting in concrete and asphalt, and under pavers.

If your application conditions are different, or if you have any questions, contact your nVent representative or call (800) 545-6258.

How to Use this Guide

This design guide presents nVent's recommendations for designing a RAYCHEM Mineral Insulated (MI) heating cable surface snow melting system. It provides design and performance data, electrical sizing information, and heating cable layout suggestions. Following these recommendations will result in a reliable, energy-efficient system.

Follow the design steps in the section "Surface Snow Melting Design" on page 139 and use the "RAYCHEM MI System Surface Snow Melting Design Worksheet" on page 171 to document the project parameters that you will need for your project's Bill of Materials.

OTHER REQUIRED DOCUMENTS

This guide is not intended to provide comprehensive installation instructions. For complete RAYCHEM MI surface snow melting system installation instructions, please refer to the following additional required documents:

- Surface Snow Melting MI Installation and Operation Manual (H57754)
- Additional installation instructions included with thermostats, controllers, and accessories

If you do not have these documents, you can obtain them from the nVent web site at nVent.com.

For products and applications not covered by this design guide, including installations in hazardous locations or where electromagnetic interference (EMI) may be of concern, such as traffic loop detectors, please contact your nVent representative or call (800) 545-6258.

Safety Guidelines

As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

This symbol identifies particularly important safety warnings that must be followed.

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

nVent's standard limited warranty applies to RAYCHEM Snow Melting Systems.

An extension of the limited warranty period to ten (10) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

Warranty

The RAYCHEM MI heating cable surface snow melting system provides snow melting for concrete, asphalt, and pavers. The copper-sheathed, mineral insulated heating cables are coated with a Low Smoke Zero Halogen (LSZH) jacket and are supplied as complete factory-assembled cables ready to connect to a junction box. The series-type technology, inherent to all mineral insulated heating cables, provides a reliable and consistent heat source that is ideal for embedded snow melting applications. The system includes heating cable, junction boxes, a control system and sensors, power distribution, and the tools necessary for a complete installation.

Typical System

- A typical system includes the following:
- MI heating cable
- · Junction boxes and accessories
- Snow controller and sensors
- Power distribution

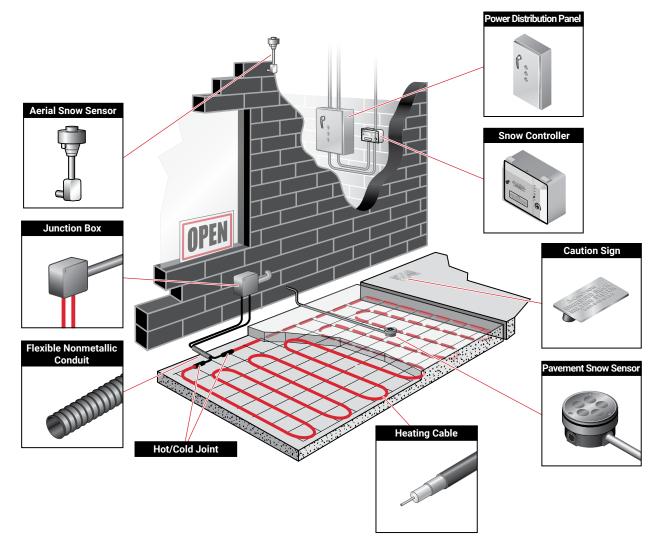
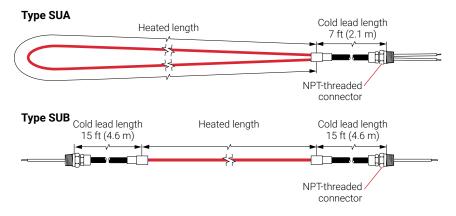
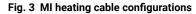


Fig. 1 Typical RAYCHEM MI system

MI Heating Cable Construction

Standard surface snow melting MI heating cables are comprised of a single conductor surrounded by magnesium oxide insulation, a solid copper sheath, and an extruded Low Smoke Zero Halogen (LSZH) jacket. The jacket protects the copper sheath from corrosive elements that can exist in surface snow melting applications.


Fig. 2 MI heating cable construction


Custom engineered heating cables are also available for applications outside the scope of this design guide. For design criteria, including the maximum cable loading (watts/foot) for installations in concrete, asphalt and paver applications, refer to the MI Heating Cable for Commercial Applications data sheet (H56990) or contact nVent at (800) 545-6258 for design assistance.

MI Heating Cable Configuration

MI heating cables are supplied as complete factory-fabricated assemblies consisting of an MI heating section that is joined to a section of MI nonheating cold lead and terminated with NPT-threaded connectors. Two configurations are available for standard heating cables:

- 1. Type SUA, consisting of a looped cable joined to a single 7 ft (2.1 m) cold lead with one 1/2-in NPT-threaded connector.
- Type SUB, consisting of a single run of cable with a 15 ft (4.6 m) cold lead and a 1/2-in NPT-threaded connector on each end. Where custom cold lead lengths are required for the heating cables shown in Table 2, Table 3, Table 4, and Table 5, contact your nVent sales representative for assistance.

The RAYCHEM MI surface snow melting system is UL Listed and CSA Certified for installation in nonhazardous locations in concrete and asphalt, and under pavers where the cables are embedded in concrete. For paver snow melting installations where the heating cables are embedded in sand or limestone screenings, special permission is required from the Authority Having Jurisdiction, e.g. the local inspection authority.

SURFACE SNOW MELTING APPLICATIONS

SURFACE SNOW MELTING

Surface snow melting systems provide the required heat flux (W/ft^2 or W/m^2) to melt snow and ice on ramps, slabs, driveways, sidewalks, platform scales, and stairs and prevent the accumulation of snow under normal snow conditions.

APPLICATION REQUIREMENTS AND ASSUMPTIONS

The design for a standard surface snow melting application is based on the following:

Reinforced Concrete

- 4 to 6 in (10 to 15 cm) thick
- · Placed on grade
- · Standard density

Asphalt

- Install on 1 in (2.5 cm) asphalt base layer if a concrete base is used in construction
- Placed on grade

Pavers

- 1 ½ to 2 ¼ in (4 to 6 cm) thick pavers
- Minimum 1 in (2.5 cm) limestone screenings or sand layer
- Placed on an approved compacted base or concrete slab

Heating cable

- Secured to reinforcing steel, mesh or with prepunched strapping
- Located approximately 2 in (5 cm) below finished surface, but not exceeding 3 in (7.5 cm)
- Secured with prepunched strapping
- Located 2 in (5 cm) below finished surface
- Secured to the compacted base or concrete with mesh or prepunched strapping
- Located in a minimum 1 in (2.5 cm) layer of limestone screenings or sand

Nonstandard applications are not covered in this design guide, but are available by contacting your nVent representative for design assistance. Using proprietary computer modeling based on a finite difference program for nonstandard applications, nVent can design an appropriate snow melting system.

The following are examples of nonstandard applications not addressed in this design guide:

- Concrete thinner than 4 in (10 cm)
- Concrete thicker than 6 in (15 cm)
- · Lightweight concrete
- Ramps, walkways, and stairs with air below
- Concrete without reinforcing bar or mesh
- Retrofitting of heating cable to existing pavement

SURFACE SNOW MELTING DESIGN

This section details the steps necessary to design your application. The examples provided in each step are intended to incrementally illustrate sample project designs from start to finish. As you go through each step, use the "Surface Snow Melting Design" on page 140 to document your project parameters, so that by that end of this section, you will have the information you need for your Bill of Materials.

SnoCalc is an online design tool available to help you create surface snow melting designs and layouts. It is available at nVent.com.

Design Step by Step

Your system design requires the following essential steps:

- Determine design conditions
- 2 Determine the required watt density
- 3 Determine the total area to be protected
- 4 Select the heating cable
- 5 Determine heating cable spacing
- 6 Determine the electrical parameters
- **7** Select the control system and power distribution
- 8 Select the accessories
- 9 Complete the Bill of Materials

Surface Snow Melting			
1.	Determine design conditions		
2.	Determine the required watt density		
3.	Determine the total area to be protected		
4.	Select the heating cable		
5.	Determine heating cable spacing		
6.	Determine the electrical parameters		
7.	Select the control system and power distribution		
8.	Select the accessories		
9.	Complete the Bill of Materials		

Step Determine design conditions

Collect the following information to determine your design conditions:

- Environment
 - Geographical location
- Paving material
 - Concrete
 - Asphalt
 - Pavers
- Size and layout
 - Slab surface area
 - Ramp surface area
- Stairs
 - Number of stairs
 - Stair width
 - Riser height
 - Stair depth
 - Landing surface area
- Wheel tracks
 - Track length
- Concrete joints
- Surface drains
- Location of area structures
- Other information as appropriate
- Supply voltage
- Phase (single-phase or three-phase)
- Control method
 - Automatic snow melting controller
 - Slab sensing thermostat
 - Manual on/off control

Note: Drainage must be a primary concern in any snow melting system design. Improper drainage will result in ice formation on the surface of the heated area once the system is de-energized. Ice formation along the drainage path away from the heated area may create an ice dam and prohibit proper draining. If your design conditions may lead to drainage problems, please contact nVent Technical Support for assistance.

PREPARE SCALE DRAWING

Draw to scale the area in which the snow melting cables will be installed, and note the rating and location of the voltage supply. Include stairs and paths for melting water runoff. Show concrete joints, surface drains, and location of area structures including post installations for railings, permanent benches, and flagpoles. Measurements for each distinct section of the snow melting application, including stairs, will allow for an accurate system design, including control configuration. Use these symbols to indicate the heating cable expansion and crack-control joints:

- ---- Expansion joint
- ---- Crack-control joint
- Fig. 4 Design symbols

Example: Surface Snow Melting System

Geographical location	Philadelphia, PA
Ramp surface area	45 ft x 12 ft (13.7 m x 3.66 m)
Paving material	Concrete
Supply voltage	480 V, three-phase
Control method	Automatic snow melting controller

Example: Surface Snow Melting System for Stairs

Geographical location	Philadelphia, PA		
Number of stairs	5		
Stair width	5 ft (1.52 m)		
Riser height	8 in (20 cm)		
Stair depth	11 in (28 cm)		
Landing surface area	5 ft x 3 ft (1.52 m x 0.91 m)		
Paving material	Concrete		
Supply voltage	208 V, single-phase		
Control method	Slab sensing thermostat		

Example: Surface Snow Melting System for Wheel Tracks

Geographical location	Philadelphia, PA
Track length	28 ft (8.5 m)
Paving material	Asphalt
Supply voltage	240 V, single-phase
Control method	Automatic snow melting controller

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

Step Determine the required watt density

For maximum performance from any snow melting system, you must first take into account the local snowfall patterns. A system design that works well in one city may be inadequate in another. The energy required to melt snow varies with air temperature, wind speed, relative humidity, snow density, and the depth of the snow on the pavement.

SURFACE SNOW MELTING

Table 1 summarizes the required watt density for most major cities in North America based on typical minimum ambient temperatures and the snowfall patterns. Select the city from the list, or closest city, where similar climatic conditions exist.

TABLE 1 REQUIRED WATT DENSITY FOR SURFACE SNOW MELTING

	Watts/ft ²			Watts/m ²			
City	Concrete	Asphalt or pavers	Concrete stairs	Concrete	Asphalt or pavers	Concrete stairs	
USA							
Baltimore, MD	35	40	40	377	431	431	
Boston, MA	35	40	45	377	431	484	
Buffalo, NY	40	45	45	431	484	484	
Chicago, IL	35	40	40	377	431	431	
Cincinnati, OH	35	40	40	377	431	431	
Cleveland, OH	35	40	40	377	431	431	
Denver, CO	35	40	40	377	431	431	
Detroit, MI	35	40	40	377	431	431	
Great Falls, MT	50	50	55	538	538	592	
Greensboro, NC	35	35	40	377	377	431	
Indianapolis, IN	35	40	40	377	431	431	
Minneapolis, MN	50	50	55	538	538	592	
New York, NY	35	40	45	377	431	484	
Omaha, NE	45	50	50	484	538	538	
Philadelphia, PA	35	40	45	377	431	484	
Salt Lake City, UT	35	35	40	377	377	431	
Seattle, WA	35	35	40	377	377	431	
St. Louis, MO	35	40	45	377	431	484	
Canada							
Calgary, AB	45	45	50	484	484	538	
Edmonton, AB	50	50	55	538	538	592	
Fredericton, NB	40	45	45	431	484	484	
Halifax, NS	35	40	40	377	431	431	
Moncton, NB	40	40	45	431	431	484	
Montreal, QC	45	45	50	484	484	538	
Ottawa, ON	45	45	50	484	484	538	
Prince George, BC	50	55	55	538	592	592	
Quebec, QC	45	45	50	484	484	538	
Regina, SK	50	55	55	538	592	592	
Saskatoon, SK	50	50	55	538	538	592	
St. John, NB	40	45	45	431	484	484	
St. John's, NF	35	35	40	377	377	431	
Sudbury, ON	40	45	50	431	484	538	
Thunder Bay, ON	50	55	55	538	592	592	
Toronto, ON	35	40	40	377	431	431	
Vancouver, BC	35	40	40	377	431	431	
Winnipeg, MB	50	55	55	538	592	592	

Example: Surface Snow Melting System

Geographical location	Philadelphia, PA (from Step 1)
Paving material	Concrete (from Step 1)
Required watt density	35 W/ft² (377 W/m²) (from Table 1)

Example: Surface Snow Melting System for Stairs

Geographical location	Philadelphia, PA (from Step 1)
Paving material	Concrete (from Step 1)
Required watt density	45 W/ft² (484 W/m²) (from Table 1)

Example: Surface Snow Melting System for Wheel Tracks

Geographical location
Paving material
Required watt density

Philadelphia, PA (from Step 1) Asphalt (from Step 1) **40 W/ft² (431 W/m²)** (from Table 1)

Step Determine the total area to be protected

SURFACES

To select the proper heating cable you need to know the size of the surface area you will be protecting from snow accumulation. For large areas, divide the area into smaller subsections no greater than 400 ft² (37.2 m²). For three-phase voltage supplies, create multiples of three equal areas not exceeding 400 ft² (37.2 m²) as shown in Fig. 5. Do not exceed 20 ft (6.1 m) in any direction. If assistance is required to select heating cables for irregularly-shaped areas, please contact your nVent representative.

Total surface area (ft²/m²) = Length (ft/m) x Width (ft/m)

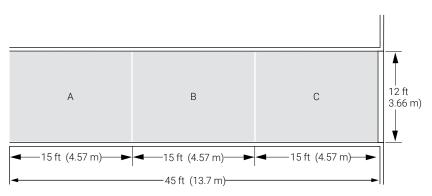
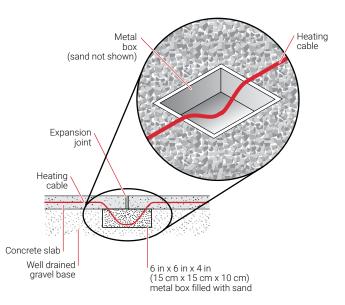


Fig. 5 Example for surface snow melting

Joints in Concrete


Many large concrete slabs are constructed with control and expansion joints. There are three types of joints that can be placed in concrete slabs. An explanation of each follows:

1. Crack-control joints (sawcuts) are intended to control where the slab will crack. Their exact location is determined by the concrete installers before the concrete is poured. Because of the reinforcement in the base slab, there is rarely a shearing action caused by differential vertical movement between the concrete on either side of the crack. As a precautionary measure, however, either of the two methods of crossing control joints shown in Fig. 7 should be used. Minimize the number of times the joint is crossed as shown in Fig. 7. When installing cables using the two-pour method, control joints must be placed in both the base slab and the surface slab.

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
б.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

2. Construction joints are joints that occur when the concrete pour is going to stop but will resume at a later date. Therefore their location may not be known beforehand. However, the rebar is left protruding out of the first pour so that it enters the next pour and therefore shearing action rarely occurs due to differential vertical movement between the concrete on either side of the joint. As a precautionary measure, either of the two methods of crossing control joints shown in Fig. 7 should be used.

3. Expansion joints are placed where a concrete slab abuts a structure, such as a building, a slab, or a foundation, etc. Since the reinforcement does not cross expansion joints, differential movement will occur between the slab and the adjoining structure. **Avoid crossing expansion joints with the heating cable.** If this is not possible, expansion joints can be crossed using a sand filled metal box as shown in Fig. 6.

Fig. 6 Crossing expansion joints

Cold leads may cross expansion joints provided that they are fed through nonmetallic conduit to protect against shear (see Fig. 7).

Important Points to Remember

- Concrete slabs should have crack-control joints at intervals typically not exceeding 20 ft (6.1 m).
- When crossing crack-control joints, protect the cable as shown in Fig. 7 or design for a sufficient number of heating cables to avoid crossing control joints altogether.
- Avoid crossing expansion joints. If possible, design for a sufficient number of heating cables so that the cables do not cross expansion joints.

SURFACE SNOW MELTING - MI MINERAL INSULATED HEATING CABLE SYSTEM

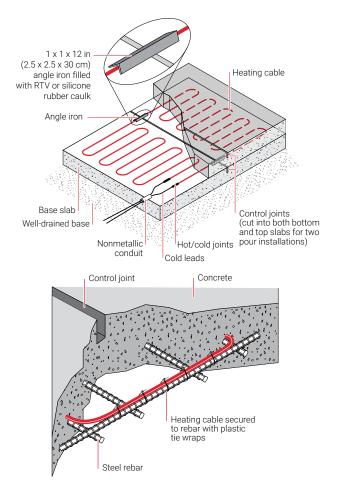


Fig. 7 Method of crossing crack-control joints with MI heating cable in concrete slabs

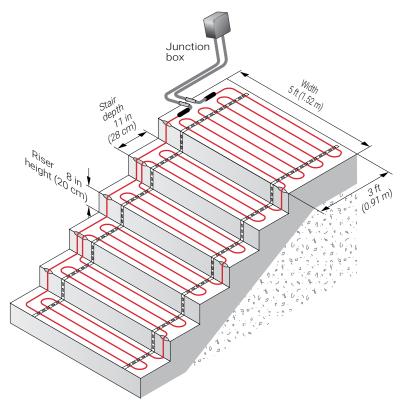
Example: Surface Snow Melting System

Total ramp surface area

For three-phase, divide the ramp into three equal subsections

15 ft x 12 ft = 180 ft² (see Fig. 5) (4.57 m x 3.66 m = 16.7 m²)

 $(13.7 \text{ m x} 3.66 \text{ m} = 50.1 \text{ m}^2)$


 $45 \text{ ft x } 12 \text{ ft } = 540 \text{ ft}^2 \text{ (from Step 1)}$

Continue with "Step 4 Select the heating cable on page149" and use Table 2 or Table 3 to select an appropriate heating cable.

STAIRS

Snow melting applications in concrete stairs present a problem distinct from snow melting on single layer surfaces. Heat loss in stairs occurs from the two exposed surfaces: the top of each stair and its side. Melting snow and ice from stairs requires one run of heating cable be installed 2 to 3 in (5 to 7.5 cm) maximum from the front, or nose, of each stair at a depth of 2 in (5 cm) below the surface of the stair.

Note: Stairs typically require a heating cable that is a specific length. In many cases, it may not be possible to find a SUA/SUB heating cable of the exact length, and a custom engineered heating cable will be required. In these cases, or for elevated stairs or stairs that are not concrete, please contact your nVent representative for assistance in designing a custom engineered heating cable.

Fig. 8 Example for concrete stair

Typically, three runs of cable are used for stairs with a depth of 10.5 to 12 in (27–30 cm); two runs of cable may be used for stairs with a depth of less than 10.5 in (27 cm). Riser height is typically 8 in (20 cm). For stairs greater than 12 in (30 cm) in depth, contact your nVent representative.

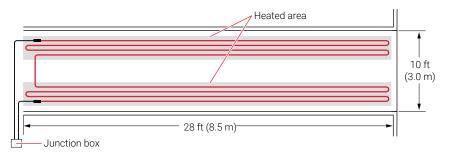
Use the formulas below to determine the length of cable required for stairs (a) and for an attached landing (b), if any, where no expansion joint exists between the stair and landing.

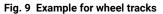
(a)	Length of cable for stair (ft/m)	=	No. of stairs x [(No. of runs per stair x stair width (ft/m)) + (2 x riser height (ft/m))]
(b)	Length of cable for attached landing (ft)	=	Landing area (ft ²) x 12 4 5

Length of cable for attached landing (m) = $\frac{\text{Landing area } (m^2) \times 1000}{115}$

For applications where the landing area is very large or where an expansion joint exists between the stairs and landing, consider the stairs and landing as two separate areas. In these cases, determine the length of cable required for the stairs as shown above and select the cable for the landing as shown for surface snow melting.

Example: Surface Snow Melting System for Stairs


Number of stairs	5 stairs (from Step 1)
Stair width	5 ft (1.52 m) (from Step 1)
Riser height	8 in (20 cm) convert to 0.7 ft (0.2 m) (from Step 1)
Stair depth	11 in (28 cm) (from Step 1)
Number of cable runs per stair	3 runs (for 11 in (28 cm) stair depth)
Length of cable for stair	5 stairs x [(3 x 5 ft) + (2 x 0.7 ft)] = 82 ft 5 stairs x [(3 x 1.52 m) + (2 x 0.2 m)] = 25 m
Landing surface area	5 ft x 3 ft = 15 ft ² (from Step 1) 1.52 m x 0.91 m = 1.4 m ²
Length of cable for attached landing	(15 ft ² x 12) / 4.5 = 40 ft (1.4 m ² x 1000) / 115 = 12.2 m
Total heating cable length required	82 ft + 40 ft = 122 ft 25 m + 12.2 m = 37.2 m


Continue with "Step 4 Select the heating cable" on page 15, and use Table 4 on page 20 to select an appropriate heating cable.

WHEEL TRACKS

To reduce power consumption for concrete and asphalt driveways, it may be sufficient to snow melt only the wheel tracks. However, do not snow melt only the wheel tracks in paver applications because of potential problems with pavers sinking.

It is not necessary to calculate the area of the wheel track to select the heating cable. Four runs of heating cable per wheel track spaced evenly over the track width, typically 18 in (46 cm), will provide sufficient heat for snow melting.

Example: Surface Snow Melting System for Wheel Tracks

Wheel track length

Typical wheel track width

28 ft (8.5 m) (from Step 1) 18 in (46 cm)

Continue with "Step 4 Select the heating cable" on page 149 and use Table 5 on page 155 to select an appropriate heating cable.

Step Select the heating cable

Three-phase supply voltages, including 208 V, 480 / 277 V, and 600 / 347 V, are commonly used for snow melting applications for large areas. For small areas, a single-phase supply voltage must be used. A snow melting system designed for a three-phase supply uses three identical heating cables in each circuit, resulting in the following advantages: fewer circuits, reduced distribution system costs, and a balanced heating system load.

SURFACES

Select a heating cable from Table 2 on page 150 or Table 3 on page 151. When selecting cables from Table 2, ensure that the selected cable is suitable for use when embedded in the paving material being used. The heating cables in Table 3 are suitable for surface snow melting applications where the cables will be directly embedded only in concrete. To select a cable, first calculate the required heating cable output (watts) by multiplying the watt density by the area or subsection area.

Under the appropriate voltage in Table 2 or Table 3, select a heating cable from the shaded column with a heating cable output equal to or up to 30% greater than the calculated wattage. In cases where the surface area has been divided into equal subsections, select the appropriate number of heating cables.

Required watts	=	Watt density x Area
Number of cables	=	Number of subsection areas

Example: Surface Snow Melting System

Example. Surface Show Menting Syste	em
Supply voltage	480 V, three-phase (from Step 1)
Required watt density for ramp	35 W/ft² (377 W/m²) (from Step 2)
Subsection area (for 3 equal areas)	180 ft ² (16.7 m ²) (from Step 3)
Required watts (for each subsection)	35 W/ft ² x 180 ft ² = 6300 W
	377 W/m ² x 16.7 m ² = 6300 W
Heating cable catalog number	SUB20
Cable wattage	6450 W
Cable voltage	480 V (for cables connected in Delta configuration)
Heating cable length	340 ft (103.6 m)
Number of cables	3 (one cable required for each subsection)

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

TABLE 2 SELECTION TABLE FOR CONCRETE, ASPHALT, AND PAVER AREAS

Heating cable				Heating cable output	Heating cable length		Heating cable current
catalog number	Concrete	Asphalt	Pavers ¹	(W)	(ft)	(m)	(A)
120 V							
SUA5	Yes	Yes	Yes	550	40	12.2	4.6
SUA9	Yes	Yes	Yes	1100	66	20.1	9.2
208 V							
SUA4	Yes	Yes	No	1600	68	20.7	7.7
SUA7	Yes	Yes	No	2300	95	29	11.1
SUB1	Yes	Yes	No	3100	132	40.2	14.9
SUB3	Yes	Yes	Yes	3900	280	85.3	18.8
SUB5	Yes	Yes	No	5500	260	79.2	26.4
SUB7	Yes	Yes	No	7000	310	94.5	33.7
SUB9	Yes	Yes	Yes	9000	630	192	43.3
SUB10	Yes	Yes	Yes	13000	717	218.5	62.5
240 V							
SUA3	Yes	Yes	Yes	2000	140	42.7	8.3
SUA8	Yes	Yes	Yes	3200	177	53.9	13.3
SUB2	Yes	Yes	Yes	4000	240	73.1	16.7
SUB3	Yes	Yes	Yes	5200	280	85.3	21.7
SUB4	Yes	Yes	Yes	6000	320	97.5	25
SUB5	Yes	No	No	7350	260	79.2	30.6
SUB6	Yes	Yes	Yes	7500	375	114.3	31.3
SUB8	Yes	Yes	Yes	9000	550	167.6	37.5
SUB7	Yes	No	No	9250	310	94.5	38.5
SUB9	Yes	Yes	Yes	12000	630	192	50
SUB10	Yes	Yes	No	17000	717	218.5	70.8
277 V							
SUA3	Yes	Yes	Yes	2740	140	42.7	9.9
SUA8	Yes	Yes	No	4100	177	53.9	14.8
SUB15	Yes	Yes	Yes	4250	225	68.6	15.3
SUB2	Yes	Yes	No	5300	240	73.1	19.1
SUB16	Yes	Yes	Yes	6180	310	94.5	22.3
SUB3	Yes	Yes	No	6850	280	85.3	24.7
SUB4	Yes	Yes	No	8000	320	97.5	28.9
SUB17	Yes	Yes	Yes	8700	440	134.1	31.4
SUB6	Yes	No	No	10200	375	114.3	36.8
SUB18	Yes	Yes	No	12000	560	170.7	43.3
SUB8	Yes	Yes	No	12200	550	167.6	44.0
SUB9	Yes	No	No	16400	630	192	59.2
480 V		-	-				
SUB19	Yes	Yes	Yes	4700	245	74.7	9.8
SUB20	Yes	Yes	Yes	6450	340	103.6	13.4
SUB21	Yes	Yes	Yes	8700	440	134.1	18.1
SUB22	Yes	Yes	No	11000	525	160	22.9

¹ Cables embedded in sand or limestone screenings.

Note: Type SUA cables supplied with 7 ft (2.1 m) cold lead. Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%.

To modify cold lead length, contact your nVent sales representative.

TABLE 2 SELECTION TABLE FOR CONCRETE, ASPHALT, AND PAVER AREAS

Heating cable				Heating cable output	Heating c	able length	Heating cable current
catalog number	Concrete	Asphalt	Pavers ¹	(W)	(ft)	(m)	(A)
600 V							
SUB11	Yes	Yes	Yes	4100	225	68.6	6.8
SUB12	Yes	Yes	Yes	5800	310	94.5	9.7
SUB13	Yes	Yes	Yes	8000	428	130.5	13.3
SUB14	Yes	Yes	Yes	11000	548	167	18.3

¹ Cables embedded in sand or limestone screenings.

Note: Type SUA cables supplied with 7 ft (2.1 m) cold lead. Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%. To modify cold lead length, contact your nVent sales representative.

The heating cables in have been specifically designed for use only in concrete. Do not use these cables in asphalt or for paver areas because they exceed the maximum watts per foot loading for these applications (embedded in asphalt 25 watts/foot maximum; embedded in sand/limestone screenings for paver areas – 20 watts/foot maximum). To select a cable, calculate the required heating cable output (watts) as shown in the example earlier in this section.

TABLE 3 SELECTION TABLE FOR CONCRETE AREAS

Heating cable	Heating cable output		g cable igth	Heating cable current	
catalog number	(W)	(ft)	(m)	(A)	
208 V					
SUB1402	1400	50	15.2	6.7	
SUB1702	1700	64	19.5	8.2	
SUB2002	2000	72	22.0	9.6	
SUB2402	2400	90	27.4	11.5	
SUB2802	2800	103	31.4	13.5	
SUB3402	3400	121	36.9	16.3	
SUB3902	3900	139	42.4	18.8	
SUB4502	4500	160	48.8	21.6	
SUB5502	5500	197	60.1	26.4	
SUB6402	6400	226	68.9	30.8	
SUB7802	7800	277	84.5	37.5	
SUB10302	10300	368	112.2	49.5	
SUB12802	12800	455	138.7	61.5	
SUB16102	16100	576	175.6	77.4	

Note: Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%. To modify cold lead length, contact your nVent sales representative.

TABLE 3 SELECTION TABLE FOR CONCRETE AREAS

Heating cable Heating cable Heating cable Heating cable							
Heating cable catalog	Heating cable output	length		Heating cable current			
number	(W)	(ft)	(m)	(A)			
240 V							
SUB1604	1600	59	18.0	6.7			
SUB2004	2000	74	22.6	8.3			
SUB2304	2300	84	25.6	9.6			
SUB2804	2800	103	31.4	11.7			
SUB3204	3200	120	36.6	13.3			
SUB3904	3900	140	42.7	16.3			
SUB4504	4500	160	48.8	18.8			
SUB5204	5200	185	56.4	21.7			
SUB6404	6400	225	68.6	26.7			
SUB7304	7300	263	80.2	30.4			
SUB9004	9000	320	97.6	37.5			
SUB11904	11900	426	129.9	49.6			
SUB14704	14700	528	161.0	61.3			
SUB18604	18600	664	202.4	77.5			
277 V							
SUB1807	1800	70	21.3	6.5			
SUB2307	2300	85	25.9	8.3			
SUB2707	2700	95	29.0	9.7			
SUB3207	3200	119	36.3	11.6			
SUB3807	3800	135	41.2	13.7			
SUB4507	4500	162	49.4	16.2			
SUB5207	5200	184	56.1	18.8			
SUB6007	6000	213	64.9	21.7			
SUB7307	7300	262	79.9	26.4			
SUB8507	8500	300	91.5	30.7			
SUB10307	10300	372	113.4	37.2			
SUB13707	13700	491	149.7	49.5			
SUB17207	17200	600	182.9	62.1			
347 V							
SUB2305	2300	85	25.9	6.6			
SUB2905	2900	107	32.6	8.4			
SUB3405	3400	119	36.3	9.8			
SUB4105	4100	148	45.1	11.8			
SUB4705	4700	171	52.1	13.5			
SUB5605	5600	205	62.5	16.1			
SUB6505	6500	231	70.4	18.7			
SUB7505	7500	267	81.4	21.6			
SUB9205	9200	327	99.7	26.5			
SUB10605	10600	380	115.9	30.5			
SUB13005	13000	463	141.2	37.5			
SUB17205	17200	614	187.2	49.6			

Note: Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%. To modify cold lead length, contact your nVent sales representative.

TABLE 3 SELECTION TABLE FOR CONCRET	E AREAS
-------------------------------------	---------

Heating cable	Heating cable output	Heating cat length	le	Heating cable current
catalog number	(W)	(ft)	(m)	(A)
480 V				
SUB3208	3200	118	36.0	6.7
SUB4008	4000	147	44.8	8.3
SUB4708	4700	163	49.7	9.8
SUB5708	5700	202	61.6	11.9
SUB6608	6600	233	71.0	13.8
SUB7908	7900	278	84.8	16.5
SUB9008	9000	320	97.6	18.8
SUB10408	10400	368	112.2	21.7
SUB12808	12800	450	137.2	26.7
SUB14808	14800	520	158.5	30.8
SUB18008	18000	640	195.1	37.5
600 V				
SUB4006	4000	147	44.8	6.7
SUB5106	5100	181	55.2	8.5
SUB5806	5800	207	63.1	9.7
SUB7106	7100	254	77.4	11.8
SUB8206	8200	293	89.3	13.7
SUB9806	9800	350	106.7	16.3
SUB11206	11200	402	122.6	18.7
SUB13006	13000	462	140.9	21.7
SUB15906	15900	566	172.6	26.5

Note: Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%. To modify cold lead length, contact your nVent sales representative.

STAIRS

For stairs, select a heating cable from Table 4. Under the appropriate voltage, select a cable from the shaded column with a length equal to or up to 20 ft (6.1 m) longer than the calculated length from Step 3. Next, confirm that the watt density is equal to, or greater than, the watt density determined from Step 2. If a cable of the required length is not available, please contact your nVent representative for assistance in designing a custom heating cable.

Anticipate and design for the addition of railings or other follow on construction that will require cutting or drilling into the concrete as damage to installed heating cable may occur. Allow for at least 4 in (10 cm) clearance between the heating cable and any planned cuts or holes.

Example: Surface Snow Melting System for Stairs

Supply voltage	208 V, single-phase (from Step 1)
Required watt density	45 W/ft² (484 W/m²) (from Step 2)
Total heating cable length required	122 ft (37.2 m) (from Step 3)
Heating cable catalog number	SUB1
Cable wattage	3100 W
Cable voltage	208 V
Heating cable length	132 ft (40.2 m)
Number of cables	1
Installed watt density	55 W/ft² (592 W/m²) (from Table 4)

TABLE 4 SELECTION TABLE FOR CONCRETE STAIRS

Parting cableParma cable2 runs cableQurineQ				Watt dens	ity			Heating	
Name Pachage number basic(n)(W/f*)	the effective set to		able	3 runs cal	ble ¹	2 runs cal	ble ²	cable output	Heating cable current
SUA54012.2404315004.6SUA96620.1505384043111009.2208 V555925559216007.7SUA79529.05559255592310014.9SUB113240.25559255592310014.9SUB526079.2555925053870033.7SUB731094.5555925053870033.7SUB9630192.040431900043.3240 V73.1505384043140016.7SUB328085.3555924043150025.025.0SUB432097.55559245484700037.5SUB8550167.6505384043190037.5SUB8550167.6505384043190037.5SUB8550167.6505384643190037.5SUB8550167.6592454847009.9SUB1522568.6555924548420015.3SUB8300167.65925925559268.559245.4484250<			(m)	(W/ft²)	(W/m²)	(W/ft²)	(W/m²)		(A)
SUA9 66 20.1 50 538 40 431 100 9.2 208 V SUA4 68 20.7 55 592 55 592 300 7.1 SUA7 95 29.0 55 592 55 592 300 11.1 SUB1 132 40.2 55 592 50 538 500 26.4 SUB7 310 94.5 55 592 50 538 500 26.4 SUB9 630 192.0 40 431 - - 900 8.3 SUB2 260 79.2 43 92.0 53 502 50 538 700 3.3 SUB2 240 73.1 50 532 40 431 500 25.0 SUB3 250 167.6 50 538 40 431 900 37.5 SUB4 320 97.5 55	120 V								
208 V SUA4 6.8 2.0.7 5.5 5.92 5.5 5.92 16.00 7.7 SUA7 9.5 2.90 5.5 5.92 5.5 5.92 3100 11.4 SUB1 13.2 40.2 5.5 5.92 5.0 5.38 5500 2.6.4 SUB3 2.60 7.9.2 5.5 5.92 5.0 5.38 5000 2.6.4 SUB7 310 9.4.5 5.5 5.92 5.0 5.38 7000 3.3.7 SUB9 630 19.2 40 4.31 - - 2000 8.3 SUB2 2.40 7.3.1 5.0 5.38 40 431 4000 16.7 SUB4 2.20 7.5 5.5 5.92 4.45 4.84 6000 2.0 SUB4 2.90 5.5 5.92 4.9 4.31 9000 3.7 SUB4 2.90 5.5 5.92	SUA5	40	12.2	40	431	-	-	550	4.6
SUA4 68 20.7 55 592 55 592 23.00 11.1 SUB1 12 40.2 55 592 55 592 3100 14.9 SUB3 280 85.3 40 431 - - 3900 18.8 SUB5 260 79.2 55 592 50 538 500 26.4 SUB7 310 94.5 55 592 50 538 7000 33.7 SUB7 310 94.5 55 592 50 538 7000 43.3 Z40 V V V V V - - 9000 43.3 SUB2 240 73.1 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 45 484 6000 25.0 SUB4 370 97.5 55 592 45 484 6000 37.5 SUB4 320 97.5 55 592 45	SUA9	66	20.1	50	538	40	431	1100	9.2
SUA7 95 29.0 55 592 55 592 310 11.1 SUB1 132 40.2 55 592 55 592 3100 14.9 SUB3 280 85.3 40 431 - - 3900 18.8 SUB5 260 79.2 55 592 50 538 7000 33.7 SUB7 310 94.5 55 592 50 538 7000 43.3 2007 31 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 45 484 6000 25.0 SUB4 280 59.3 55 592 45 484 900 37.5 SUB4 280 14.3 55 592 45 484 9000 37.5 SUB4 320 17.6 50 538 40 431 9000	208 V								
SUB1 132 40.2 55 592 592 3100 14.9 SUB3 280 85.3 40 431 - - 3900 18.8 SUB5 260 79.2 55 592 50 538 5500 26.4 SUB7 310 94.5 55 592 50 538 7000 33.7 SUB9 630 192.0 40 431 - - 9000 43.3 240 73.1 50 538 40 431 4000 16.7 SUB4 320 97.5 55 592 40 431 500 21.7 SUB4 320 97.5 55 592 45 484 6000 25.0 SUB4 320 97.5 55 592 45 484 200 31.3 SUB4 320 97.5 55 592 45 484 200 15.3	SUA4	68	20.7	55	592	55	592	1600	7.7
SUB3 280 85.3 40 431 - - 3900 18.8 SUB5 260 79.2 55 592 50 538 500 26.4 SUB7 310 94.5 55 592 50 538 7000 33.7 SUB9 630 192.0 40 431 - - 2000 8.3 240Y 73.1 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 45 484 6000 25.0 SUB4 320 97.5 55 592 45 484 700 31.3 SUB8 550 167.6 50 538 40 431 900 37.5 SUB8 550 167.6 50 592 45 484 1200 50.0 SUB7 630 122.5 592 45 484 2740 9.9	SUA7	95	29.0	55	592	55	592	2300	11.1
SUB5 260 79.2 55 592 50 538 500 264 SUB7 310 94.5 55 592 50 538 700 33.7 SUB9 630 192.0 40 431 - - 9000 43.3 Z40 V V - - 2000 8.3 SUB2 240 73.1 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 40 431 500 25.0 SUB4 320 97.5 55 592 45 484 6000 25.0 SUB4 320 97.5 55 592 45 484 700 31.3 SUB6 500 167.6 50 538 40 431 9000 37.5 SUB7 225 68.6 55 592 45 484 4250 15.3	SUB1	132	40.2	55	592	55	592	3100	14.9
SUB731094.5555925053870033.7SUB9630192.040431900043.3240 VSUA314042.74043120008.3SUB224073.15053840431400016.7SUB328058.35559240431500021.7SUB432097.55559245484600025.0SUB6375114.35559245484750031.3SUB8550167.65053840431900037.5SUB9630192.055592454841200050.0277 VSUB1522568.6555924548427409.9SUB1522568.65559245484480022.3SUB432097.55559245484618022.3SUB1631094.55559245484618022.3SUB17440134.15559255592602143.3SUB17440134.15559245484645013.4SUB1924574.75559245484645013.4SUB20340103.6555924548	SUB3	280	85.3	40	431	-	-	3900	18.8
SUB9630192.040431900043.3240 VSUA314042.74043120008.3SUB224073.15053840431400016.7SUB328058.35559240431520021.7SUB432097.55559245484600025.0SUB6375114.35559245484750031.3SUB85016.65053840431900037.5SUB9630192.055592454841200050.0277 VSUB1522568.6555924548427409.9SUB1522568.65559245484425015.3SUB224073.1555925559268.024.7SUB224073.1555925559268.024.7SUB224073.1555925559268.024.7SUB224073.1555925559268.024.7SUB224073.1555925559268.024.7SUB328085.3555925559268.024.7SUB431094.55559255592 <td< td=""><td>SUB5</td><td>260</td><td>79.2</td><td>55</td><td>592</td><td>50</td><td>538</td><td>5500</td><td>26.4</td></td<>	SUB5	260	79.2	55	592	50	538	5500	26.4
240 V SUA3 140 42.7 40 431 - - 2000 8.3 SUB2 240 73.1 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 40 431 5200 21.7 SUB4 320 97.5 55 592 45 484 6000 25.0 SUB6 375 114.3 55 592 45 484 7000 31.3 SUB8 550 167.6 50 538 40 431 9000 37.5 SUB9 630 192.0 55 592 45 484 12000 50.0 277 V V V V V 9.9 50.0 538 530.0 19.1 SUB15 225 68.6 55 592 45 484 4250 15.3 SUB2 240 73.1 55 592 50 538 530.0 19.1 SUB4 320 <td< td=""><td>SUB7</td><td>310</td><td>94.5</td><td>55</td><td>592</td><td>50</td><td>538</td><td>7000</td><td>33.7</td></td<>	SUB7	310	94.5	55	592	50	538	7000	33.7
SUA314042.74043120008.3SUB224073.15053840431400016.7SUB328058.35559240431520021.7SUB432097.55559245484600025.0SUB6375114.35559245484750031.3SUB8550167.65053840431900037.5SUB9630192.05559245484120050.0277 VVVVVVVVSUB314042.75559245484425015.3SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559245484618022.3SUB432097.5555925559268.624.7SUB432097.55559255592800028.9SUB432097.555592555921020036.8SUB432097.555592535921020036.8SUB432017.75559245484870011.4SUB6375114.3<	SUB9	630	192.0	40	431	-	-	9000	43.3
SUB2 240 73.1 50 538 40 431 4000 16.7 SUB3 280 58.3 55 592 40 431 5200 21.7 SUB4 320 97.5 55 592 45 484 6000 25.0 SUB6 375 114.3 55 592 45 484 7500 31.3 SUB8 550 167.6 50 538 40 431 9000 37.5 SUB9 630 192.0 55 592 45 484 12000 50.0 277 V 420 15.3 592 45 484 4250 15.3 SUB15 225 68.6 55 592 45 484 6180 22.3 SUB4 310 94.5 55 592 45 484 6180 22.3 SUB4 320 97.5 55 592	240 V								
SUB328058.355592404315200217SUB432097.55559245484600025.0SUB6375114.35559245484750031.3SUB8550167.65053840431900037.5SUB9630192.055592454841200050.0277 VSUA314042.75559245484425015.3SUB224073.15559245484425015.3SUB328085.35559245484618022.3SUB432097.55559255592685024.7SUB432097.55559255592800028.9SUB17440134.1555925559280.028.9SUB18550114.355592555921020036.8SUB6375114.355592555921020036.8SUB17440134.1555924548447009.8SUB224574.755592505381020036.8SUB2340103.6555924548447009.8SUB2340103.655592454846450 </td <td>SUA3</td> <td>140</td> <td>42.7</td> <td>40</td> <td>431</td> <td>-</td> <td>-</td> <td>2000</td> <td>8.3</td>	SUA3	140	42.7	40	431	-	-	2000	8.3
SUB432097.55559245484600025.0SUB6375114.35559245484750031.3SUB8550167.65053840431900037.5SUB9630192.055592454841200050.0277 V555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559245484618022.3SUB328085.35559245484618022.3SUB432097.55559255592685024.7SUB432097.55559255592685024.7SUB432097.55559255592685024.7SUB432097.55559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB637.614.35559245484645013.4SUB224574.75559245484645013.4SUB2340103.65559245484645013.4 <trr< td=""><td>SUB2</td><td>240</td><td>73.1</td><td>50</td><td>538</td><td>40</td><td>431</td><td>4000</td><td>16.7</td></trr<>	SUB2	240	73.1	50	538	40	431	4000	16.7
SUB6375114.35559245484750031.3SUB8550167.65053840431900037.5SUB9630192.055592454841200050.0277 V555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559245484618022.3SUB328085.3555925559268.5024.7SUB432097.5555925559268.024.7SUB432097.5555925559268.028.9SUB17440134.155592555921020036.8SUB8560170.755592505381200043.3480 V13.4555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484645013.4SUB22525160.05559245484645013.4SUB22525160.05559245484645013.4SUB22525160.055592454846450	SUB3	280	58.3	55	592	40	431	5200	21.7
SUB8550167.65053840431900037.5SUB9630192.055592454841200050.0277 VSUA314042.7555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559250538530019.1SUB328085.35559245484618022.3SUB432097.55559255592685.024.7SUB432097.55559255592685.024.7SUB432097.55559255592800028.9SUB17440134.155592555921020036.8SUB8560170.755592505381200043.3480 VSUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB22525160.05559245484870018.1SUB22525160.05559245484645013.4SUB21440134.15559245484645013.4SUB22525160.055592 <td< td=""><td>SUB4</td><td>320</td><td>97.5</td><td>55</td><td>592</td><td>45</td><td>484</td><td>6000</td><td>25.0</td></td<>	SUB4	320	97.5	55	592	45	484	6000	25.0
SUB9630192.055592454841200050.0277 VSUA314042.7555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.155592555921020036.8SUB8560170.755592505381200043.3ABO VVVVVVVVVSUB20340103.65559245484645013.4SUB21440134.15559245484645013.4SUB1924574.75559245484645013.4SUB20340103.65559245484645018.1SUB225216.05559245484645018.1SUB2122568.65559245484645013.4SUB1222568.6555924548458009.7 </td <td>SUB6</td> <td>375</td> <td>114.3</td> <td>55</td> <td>592</td> <td>45</td> <td>484</td> <td>7500</td> <td>31.3</td>	SUB6	375	114.3	55	592	45	484	7500	31.3
277 VSUA314042.7555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.155592555921020036.8SUB6375114.355592505381200043.3SUB6375114.355592505381200043.3SUB18560170.7555924548447009.8SUB1924574.75559245484645013.4SUB20340103.65559245484645018.1SUB2252160.05559245484870018.1SUB20340134.15559245484645018.1SUB20340103.65559245484645018.1SUB2052160.05559245484645018.1SUB21440134.15559245484 <td< td=""><td>SUB8</td><td>550</td><td>167.6</td><td>50</td><td>538</td><td>40</td><td>431</td><td>9000</td><td>37.5</td></td<>	SUB8	550	167.6	50	538	40	431	9000	37.5
SUA314042.7555924548427409.9SUB1522568.65559245484425015.3SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592505381200036.8SUB18560170.755592505381200043.3AB0 VSUB1924574.75559245484645013.4SUB20340103.65559245484870018.1SUB2252559245484645013.4SUB20340134.15559245484870018.1SUB2252568.65559245484870018.1SUB2325568.65559245484645013.4SUB1422568.65559245484645018.1SUB1231094.5555924548458009.7 <td>SUB9</td> <td>630</td> <td>192.0</td> <td>55</td> <td>592</td> <td>45</td> <td>484</td> <td>12000</td> <td>50.0</td>	SUB9	630	192.0	55	592	45	484	12000	50.0
SUB1522568.65559245484425015.3SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB20340103.65559245484645013.4SUB21440134.15559245484645013.4SUB225216.05559245484645013.4SUB225216.05559245484645013.4SUB225216.05559245484645013.4SUB212568.6555924043141006.8SUB1122568.6555924548458009.7SUB13428130.55559245484800013.3	277 V								
SUB224073.15559250538530019.1SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V VVVVVVVSUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9 600 V VVVVVVVSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	SUA3	140	42.7	55	592	45	484	2740	9.9
SUB1631094.55559245484618022.3SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB1924574.75559245484645013.4SUB20340103.65559245484645013.4SUB21440134.155592505381100022.9 600 V SUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	SUB15	225	68.6	55	592	45	484	4250	15.3
SUB328085.35559255592685024.7SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9GOD VSUB1122568.6555924548458009.7SUB13428130.55559245484800013.3	SUB2	240	73.1	55	592	50	538	5300	19.1
SUB432097.55559255592800028.9SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9 600 V SUB1122568.6555924548458009.7SUB13428130.55559245484800013.3	SUB16	310	94.5	55	592	45	484	6180	22.3
SUB17440134.15559245484870031.4SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.05559245484870018.1SUB2124568.6555924043141006.8SUB1122568.6555924043141006.8SUB1231094.55559245484800013.3SUB13428130.55559245484800013.3	SUB3	280	85.3	55	592	55	592	6850	24.7
SUB6375114.355592555921020036.8SUB18560170.755592505381200043.3 480 V SUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9 600 V SUB1122568.6555924043141006.8SUB1231094.55559245484800013.3	SUB4	320	97.5	55	592	55	592	8000	28.9
SUB18560170.755592505381200043.3 480 V VVVVVVSUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9 600 V VVVVVSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	SUB17	440	134.1	55	592	45	484	8700	31.4
480 VSUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9600 VSUB1122568.6555924043141006.8SUB1231094.5555924548480009.7SUB13428130.55559245484800013.3	SUB6	375	114.3	55	592	55	592	10200	36.8
SUB1924574.7555924548447009.8SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9600 VSUB1122568.6555924043141006.8SUB1231094.5555924548480009.7SUB13428130.55559245484800013.3	SUB18	560	170.7	55	592	50	538	12000	43.3
SUB20340103.65559245484645013.4SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9600 VSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	480 V								
SUB21440134.15559245484870018.1SUB22525160.055592505381100022.9600 VSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	SUB19	245	74.7	55	592	45	484	4700	9.8
SUB22525160.055592505381100022.9600 V500 V500 V500 V500 V500 V500 V500 V500 VSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3	SUB20	340	103.6	55	592	45	484	6450	13.4
SUB22525160.055592505381100022.9600 V500 V500 V500 V500 V500 V500 V500 V500 VSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3									
600 VSUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3									
SUB1122568.6555924043141006.8SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3									
SUB1231094.5555924548458009.7SUB13428130.55559245484800013.3		225	68.6	55	592	40	431	4100	6.8
SUB13 428 130.5 55 592 45 484 8000 13.3									
	SUB14	548	167.0	55	592	45	484	11000	18.3

 $^{\rm 1}$ Based on stairs with a depth of 10.5–12 in (27–30 cm) and 3 runs of cable

 $^{\rm 2}$ Based on stairs with a depth of less than 10.5 in (27 cm) and 2 runs of cable

Note: Type SUA cables supplied with 7 ft (2.1 m) cold lead. Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is -0% to +3%.

To modify cold lead length, contact your nVent sales representative.

WHEEL TRACKS

The heating cables shown in will allow for four runs of cable in each wheel track. Under the appropriate voltage, select a heating cable from the shaded column for the wheel track length required. For wheel tracks outside the scope of this design guide, please contact your nVent representative for assistance in designing a custom engineered heating cable.

Example: Surface Snow Melting System for Wheel Tracks

Supply voltage	240 V, single-phase (from Step 1)
Wheel track length	28 feet (8.5 m)
Heating cable catalog number	SUB2
Cable wattage	4000 W
Cable voltage	240 V
Heating cable length	240 ft (73.1 m)
Number of cables	1

TABLE 5 SELECTION TABLE FOR CONCRETE AND ASPHALT WHEEL TRACKS

Heating	Wheel trad	ck lenath	Spacing	(inches)	Spacing (cr	n)	Heating length	cable	Heating cable output	Heating cable current
cable catalog number	(ft)	(m)	Normal heat	High heat	Normal heat	High heat	(ft)	(m)	(W)	(A)
208 V										
SUA7	8 - 11	2.4 - 3.4	7	5	18	13	95	29	2300	11.1
SUB1	12 – 15	3.5 - 4.6	7	5	18	13	132	40.2	3100	14.9
SUA8	16 - 21	4.7 - 6.4	4	3	10	8	177	54	2400	11.5
SUB5	22 - 31	6.5 - 9.5	6	5	15	13	260	79.2	5500	26.4
SUB7	32 - 38	9.6 - 11.6	6	5	15	13	310	94.5	7000	33.7
SUB6	39 - 46	11.7 – 14.0	4	3	10	8	375	114.3	5700	27.4
SUB8	47 - 68	14.1 - 20.7	4	3	10	8	550	167.7	6800	32.7
SUB9	69 – 78	20.8 - 23.8	4	3	10	8	630	192	9000	43.3
SUB10	79 – 88	23.9 - 26.8	5	4	13	10	717	218.5	13000	62.5
240 V										
SUA3	8 - 16	2.4 - 4.9	4	3	10	8	140	42.7	2000	8.3
SUA8	17 – 21	5.0 - 6.4	5	4	13	10	177	53.9	3200	13.3
SUB2	22 – 29	6.5 - 8.8	5	4	13	10	240	73.1	4000	16.7
SUB3	30 - 34	8.9 - 10.4	5	4	13	10	280	85.3	5200	21.7
SUB4	35 - 39	10.5 - 11.9	5	4	13	10	320	97.5	6000	25
SUB6	40 - 46	12.0 - 14.0	6	5	15	13	375	114.3	7500	31.3
SUB8	47 - 68	14.1 - 20.7	5	4	13	10	550	167.6	9000	37.5
SUB9	69 - 78	20.8 - 23.8	6	5	15	13	630	192	12000	50
SUB10	79 – 88	23.9 - 26.8	7	5	18	13	717	218.5	17000	70.8
277 V										
SUA3	11 – 16	3.4 - 4.9	б	5	15	13	140	42.7	2740	9.9
SUB15	17 – 27	5.0 - 8.2	6	5	15	13	225	68.6	4250	15.3
SUB16	28 - 38	8.3 - 11.6	б	5	15	13	310	94.5	6180	22.3
SUB17	39 - 54	11.7 – 16.5	6	5	15	13	440	134.1	8700	31.4
SUB18	55 - 69	16.6 - 21.0	6	5	15	13	560	170.7	12000	43.3
SUB9 ¹	70 – 78	21.1 - 23.8	7	6	18	15	630	192	16400	59.2

¹ Not for asphalt applications; for use when embedded in concrete only

Note: Type SUA cables supplied with 7 ft (2.1 m) cold lead. Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is – 0% to +3%.

To modify cold lead length, contact your nVent sales representative.

TABLE 5 SELECTION TABLE FOR CONCRETE AND ASPHALT WHEEL TRACKS

Heating cable	Wheel tra	ck length	Spacing	(inches)	Spacing (c	:m)	Heating length	y cable	Heating cable output	Heating cable current
catalog number	(ft)	(m)	Normal heat	High heat	Normal heat	High heat	(ft)	(m)	(W)	(A)
480 V										
SUB19	20 - 29	6.1 - 8.8	б	5	15	13	245	74.7	4700	9.8
SUB20	30 - 41	8.9 - 12.5	6	5	15	13	340	103.6	6450	13.4
SUB21	42 - 54	12.6 - 16.5	6	5	15	13	440	134.1	8700	18.1
SUB22	55 - 64	16.6 - 19.5	6	5	15	13	525	160	11000	22.9
600 V										
SUB11	20 - 27	6.1 - 8.2	6	4	15	10	225	68.6	4100	6.8
SUB12	28 - 38	8.3 - 11.6	б	5	15	13	310	94.5	5800	9.7
SUB13	39 - 52	11.7 – 15.9	6	5	15	13	428	130.5	8000	13.3
SUB14	53 - 67	16.0 - 20.4	6	5	15	13	548	167	11000	18.3

¹ Not for asphalt applications; for use when embedded in concrete only

Note: Type SUA cables supplied with 7 ft (2.1 m) cold lead. Type SUB cables supplied with 15 ft (4.6 m) cold leads. Tolerance on heating cable length is – 0% to +3%.

To modify cold lead length, contact your nVent sales representative.

Surface Snow Melting

1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

Step **5** Determine heating cable spacing

SURFACES

Determine the spacing between runs of heating cables using the formula below. For concrete installations, do not exceed 10 in (25 cm) spacing of cable, and for asphalt and paver installations do not exceed 6 in (15 cm) spacing. If the cable spacing for asphalt or pavers exceeds 6 in (15 cm), contact your nVent representative for assistance.

To determine heating cable spacing required for surface snow melting

Cable spacing (in) = $\frac{\text{Area } (\text{ft}^2) \times 12 \text{ in}}{\text{Heating cable length } (\text{ft})}$ Cable spacing (cm) = $\frac{\text{Area } (\text{m}^2) \times 100 \text{ cm}}{\text{Heating cable length } (\text{ft})}$

Round to the nearest 1/2 in or nearest 1 cm to obtain cable spacing.

Note: If a large area has been divided into subsections or if a three-phase voltage supply is used, the area in the above equations will be the subsection area and the heating cable length will be the length of the cable selected for the subsection area.

Example: Surface Snow Melting System

Subsection area Heating cable catalog number Heating cable length Cable spacing 180 ft² (16.7 m²) (from Step 3) SUB20 (from Step 4) 340 ft (103.6 m) (from Step 4) (180 ft² x 12 in) / 340 ft = 6.4 in **Rounded to 6.5 in** (16.7 m² x 100 cm) / 103.6 m = 16.1 cm **Rounded to 16 cm**

STAIRS

For concrete stairs with a depth of 10.5-12 in (27-30 cm), use three runs of cable with one run 2 to 3 in (5-7.5 cm) maximum from the front edge of the stair (this is where snow and ice build-up is the most dangerous) and the remaining two runs spaced equally apart from this run of cable. For stairs with a depth of less than 10.5 in (27 cm), use two runs of cable with one run 2 to 3 in (5-7.5 cm) maximum from the front edge of the stair and the second run spaced 4 in (10 cm) from this run of cable. Up to 20 ft (6.1 m) of excess cable may be used up in an attached landing, preferably, or by adding an extra run to one or more stairs.

For attached landings, space heating cables 4.5 in (11.5 cm) apart; up to 20 ft (6.1 m) of excess cable may be used up in the landing, decreasing cable spacing as necessary to accommodate the extra cable.

Example: Surface Snow Melting System for Stairs

Heating cable catalog number	SUB1 (from Step 4)
Stair depth	11 in (28 cm) (from Step 1)
Cable spacing – stairs	3 runs per stair spaced as described above
Cable spacing – landing	4.5 in (11.5 cm)

WHEEL TRACKS

For wheel tracks, use the spacing shown in TABLE 5 Selection Table for Concrete and Asphalt Wheel Tracks on page 155 for "Normal" or "High" heat. Use the spacing for "High heat" for all asphalt applications, or where a watt density of 45 W/ft^2 (484 W/m^2) or higher is required.

Example: Surface Snow Melting System for Wheel Tracks

Paving material Heating cable catalog number Cable spacing Asphalt (from Step 1) – high heat required SUB2 (from Step 4) 4 in (10 cm) (from Table 5)

o fu o hi

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill

of Materials

Step Determine the electrical parameters

DETERMINE NUMBER OF CIRCUITS

For single phase circuits, individual heating cables are generally connected to separate circuit breakers. Multiple heating cables may be connected in parallel to reduce the number of circuits with permission from the Authority Having Jurisdiction. The single-phase heating cable current is shown in the appropriate selection table.

For three-phase circuits used in snow melting systems, the three heating cables are generally connected in the Delta configuration shown in on page 143. Heating cables may also be connected using the Wye configuration shown in Fig. 12 on page 165, but this configuration is less common. For both Delta and Wye configurations, each set of three equal cables form a single circuit.

SELECT BRANCH CIRCUIT BREAKER

The safety and reliability of any snow melting system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the snow melting system and may result in inadequate snow melting, electric shock, or fire. To minimize the risk of fire, nVent and national electrical codes require a grounded metallic covering on all heating cables. nVent, agency certifications, and national electrical codes require a grounded metallic covering on all heating cables be protected with ground-fault equipment protection.

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

The power output and heating cable current draw for the snow melting cables are shown in Table 2 through Table 5.

For single-phase circuits, the load current must not exceed 80% of the circuit breaker rating.

Load current = Heating cable current (for a single circuit) Circuit breaker rating = Load current x 1.25

For a Delta connected three-phase circuit, shown in on page 14330, the load current can be determined by multiplying the heating cable current times 1.732 and it must not exceed 80% of the 3-pole circuit breaker rating.

Load current = Heating cable current x 1.732 (for a single Delta connected circuit) Circuit breaker rating = Load current x 1.25

For a Wye connected three-phase circuit, shown in Fig. 12 on page 30, the load current is the same as the heating cable current and it must not exceed 80% of the 3-pole circuit breaker rating.

Load current = Heating cable current (for a single Wye connected circuit) Circuit breaker rating = Load current x 1.25

Record the number and ratings of the circuit breakers to be used. Use groundfault protection devices (GFPDs) for all applications. For three-phase circuits, ground fault may be accomplished using a shunt trip 3-pole breaker and a ground fault sensor.

Circuit breaker rating (A) _____ Number of circuit breakers _____

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of the loads in the system. Calculate the Total Transformer Load as follows:

For cables of equal wattage:

Transformer load (kW) = Cable (W) x Number of cables

1000

When cable wattages are not equal:

Transformer load (kW) =

 $\label{eq:cable_1} \text{Cable}_{_1}\left(\mathsf{W}\right) + \text{Cable}_{_2}\left(\mathsf{W}\right) + \text{Cable}_{_3}\left(\mathsf{W}\right) ... + \text{Cable}_{_N}\left(\mathsf{W}\right)$

1000

Example: Surface Snow Melting System

Heating cable catalog number SUB20 (from Step 4) Heating cable current 13.4 A (from) Load current 13.4 x 1.732 = 23.2 A Circuit breaker rating 30 A breaker, 80% loading 24 A Number of circuit breakers 1 6450 W (from Step 4) Cable power output Number of cables 3 (from Step 4) Total transformer load (6450 W x 3) / 1000 = 19.4 kW

Example: Surface Snow Melting System for Stairs

Heating cable catalog number SUB1 (from Step 4) Heating cable current 14.9 A (from Table 4) Load current 14.9 A Circuit breaker rating 20 A breaker, 80% loading 16 A Number of circuit breakers 1 Cable power output 3100 W (from Step 4) Number of cables 1 (from Step 4) 3100 W / 1000 = 3.1 kW Total transformer load

Example: Surface Snow Melting System for Wheel Tracks

Heating cable catalog number Heating cable current Load current Circuit breaker rating Number of circuit breakers Cable power output Number of cables Total transformer load SUB2 (from Step 4) 16.7 A (from) 16.7 A **30 A breaker, 80% loading 24 A** 1 4000 W (from Step 4) 1 (from Step 4)

4000 W / 1000 = 4.0 kW

Surface Snow Molting

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

Step Select the control system and power distribution

CONTROL SYSTEM

Select a control system from the following three options keeping in mind that an automatic snow melting controller offers the highest system reliability and the lowest operating cost.

- Manual on/off control
- · Slab sensing thermostat
- · Automatic snow melting controller

If the current rating of the control means is exceeded, all three methods will require contactors sized to carry the load. Each method offers a tradeoff, balancing initial cost versus energy efficiency and ability to provide effective snow melting. If the system is not energized when required, snow will accumulate. If the system is energized when it is not needed, there will be unnecessary power consumption. Choose the control method that best meets the project performance requirements. For additional information, refer to "POWER DISTRIBUTION" on page 164 or contact your nVent representative for details.

Manual On/Off Control

A manually controlled system is operated by a switch that controls the system power contactor. This method requires constant supervision to work effectively. A manual system can be controlled by a building management system.

Slab Sensing Thermostat

A slab sensing thermostat can be used to energize the system whenever the slab temperature is below freezing, but is not energy efficient when used as the sole means of control. The slab sensing thermostat is recommended for all snow melting applications, even when an automatic snow controller is used, and is required for all asphalt and paver installations (for asphalt, it prevents surface damage due to overheating). The snow melting controllers shown in Table 4 include a slab temperature sensor.

Automatic Snow Melting Controller

With an automatic snow melting controller, the snow melting system is automatically energized when both precipitation and low temperature are detected. When precipitation stops or the ambient temperature rises above freezing, the system is de-energized. In addition, a slab sensor de-energizes the system when the slab temperature reaches the slab sensor set point even if freezing precipitation is still present. Using an automatic snow controller with a slab sensor offers the most energy-efficient control solution. For additional information, refer to Fig. 10.

For areas where a large number of circuits are required, the RAYCHEM ACS-30 can be used. The Surface Snow Melting control mode in the ACS-30 includes an External Device control option. This option allows a Snow/Moisture sensing controller (from Table 6) to be integrated into the ACS-30 system. Note that sensors (snow or gutter) cannot be directly connected to the ACS-30 system. Refer to the ACS-30 Programming Guide (H58692) for more information on system setup.

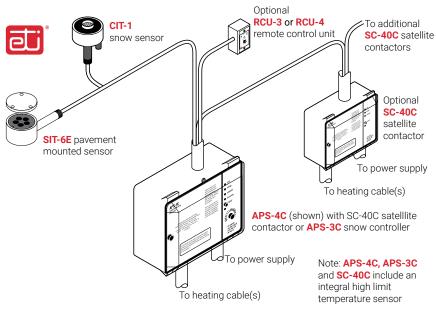


Fig. 10 Automatic snow melting control system

TABLE 6CONTROL SYSTEMS

	Catalog number	Description			
Slab Sensing Ther	Slab Sensing Thermostat and Accessory				
	ECW-GF	Electronic ambient sensing controller with 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a Type 4X rated enclosure. The controller features an AC/DC dry alarm contact relay.			
		An optional ground-fault display panel (ECW-GF-DP) that can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.			
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) that can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.			
	PD Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The PD Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The PD Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds.			
	GF Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The GF Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The GF Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds.			
		Features a built-in 30-mA, self-testing Ground-Fault Equipment Protection (GFEP) capability, digitally filtered to minimize false tripping. A ground-fault alarm must be manually reset using the Test/Reset switch before heater operation can continue.			

TABLE 6CONTROL SYSTEMS

	Catalog number	Description
	MI-GROUND-KIT	Grounding kit for nonmetallic enclosures.
Automatic Snow M	lelting Controllers	
	APS-3C	Automatic snow melting controller housed in a Type 3R enclosure provides effective, economical automatic control of all snow melting applications. Features include: 120 V or 208–240 V models, 24-A DPDT output relay and an adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm)
	APS-4C	Automatic snow melting controller housed in a Type 3R enclosure provides effective, economical automatic control of all snow melting applications. The APS-4C can operates with any number of SC-40C satellite contactors for larger loads. Features include: 277 V single-phase or 208–240, 277/480, and 600 V three-phase models, built-in 3-pole contactor, integral 30 mA ground-fault
		Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm)
	SC-40C	Satellite contactor power control peripheral for an APS-4C snow melting controller, housed in a NEMA 3R enclosure. Features include: 277 V single-phase or 208–240, 277/480 and 600 V three-phase models, built-in 3-pole contactor and integral 30 mA ground-fault circuit interrupter. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6 in (292 mm x 232 mm x 152 mm)
Consus Malking Con		
Show Melting Sen	sors and Accessories CIT-1	
		Overhead snow sensor that detects precipitation or blowing snow at ambient temperatures below 38°F (3.3°C). For use with either an APS-3C or APS-4C automatic snow melting controller.
	SIT-6E	Pavement-mounted sensor signals for the heating cable to turn on when the pavement temperature falls below 38°F (3.3°C) and precipitation in any form is present. Microcontroller technology effectively eliminates ice bridging while ensuring accurate temperature measurement. For use with either an APS-3C or APS-4C automatic snow melting controller.
	RCU-3	The RCU–3 provides control and status display to the APS–3C controller from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of APS-3C setting.
	RCU-4	The RCU–4 provides control and status display to the APS–4C controller and SC-40C Satellite Contactor from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of the APS-4C or SC-40C setting.

TABLE 6 CONTROL SYSTEMS

	Catalog number	Description			
Electronic Controlle	Electronic Controllers				
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in various commercial applications such as pipe freeze protection, roof and gutter de-icing, surface snow melting, hot water temperature maintenance and floor heating. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.			
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers. The ProtoNode-RER is for BACnet® or Metasys® N2 systems.			
Cest.	RTD-200 RTD10CS RTD50CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers. RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing			
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing			

POWER DISTRIBUTION

Three-phase, 4-wire voltage supplies such as 208 V, 480 V, and 600 V are commonly used for snow melting applications, especially for large areas. Designing the snow melting system using a three-phase voltage supply results in a balanced heating system load, since three identical cables are used in each circuit. In addition, since three cables are used in each circuit, the result is a system with fewer circuits. For small areas, it may not be possible to select three cables, and one or two heating cables, single-phase connected, must be used.

The Delta wiring configuration shown in Fig. 11 is commonly used for threephase snow melting circuits. Each circuit comprises three heating cables of equal wattage and connected as shown.

Fig. 12 shows the less common Wye wiring configuration. In this case, the three heating cables are also of equal wattage, but most important is that the heating cable voltage must equal the phase-to-neutral supply voltage.

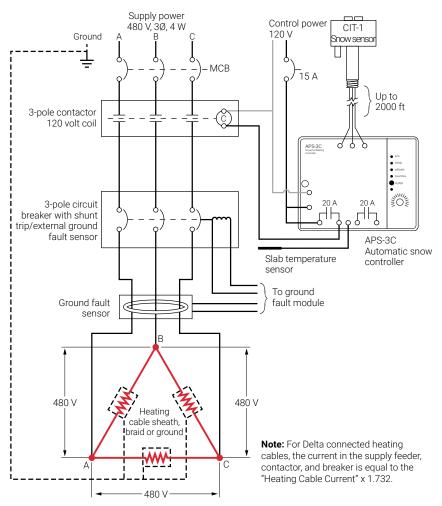


Fig. 11 Typical three-phase DELTA connected heating cables with automatic snow melting controller

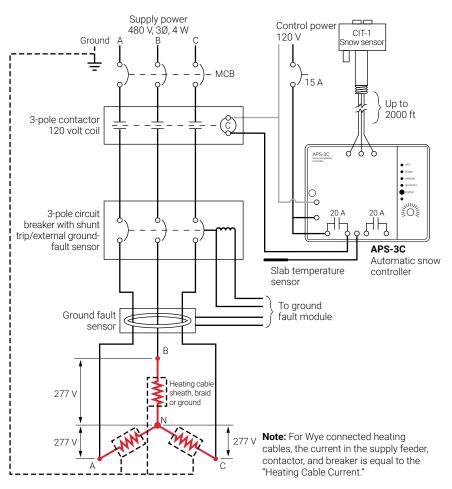


Fig. 12 Typical three-phase WYE connected heating cables with automatic snow melting controller

Connecting heating cables in Delta or Wye configuration using three-phase voltage supplies reduces the number of circuits required because three heating cables are used in each circuit. For example, if you select three heating cables to operate on 480 V, single-phase (i.e. 480 V across each cable), you need three 2-conductor feeders, three 2-pole contactors, and three 2-pole breakers (i.e. three circuits) as shown in Fig. 13. If the same three heating cables are connected in Delta configuration to the 480 V, three-phase supply, you need one 3-conductor feeder, one 3-pole contactor, and one 3-pole breaker (i.e. one circuit) as shown in Fig. 11. In addition, decreasing the number of circuits will reduce the cost of the distribution system.

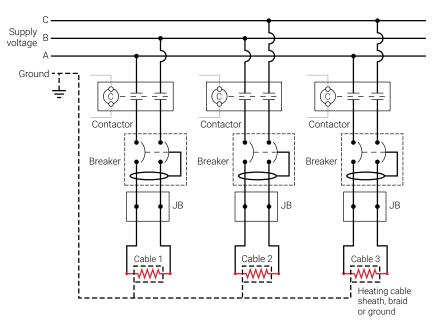
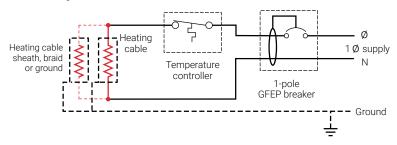
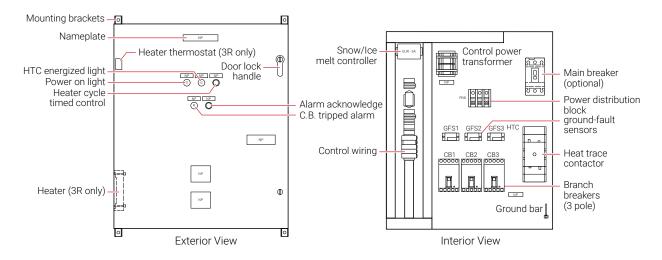



Fig. 13 Simplified single-phase connected heating cables

SINGLE CIRCUIT CONTROL

Heating cable circuits that do not exceed the current rating of the selected controller can be switched directly. Fig. 14 shows a typical single-phase circuit where the heating cable is controlled by a thermostat. When the total electrical load exceeds the rating of the controller or if a single-pole controller is used to control a three-phase circuit, an external contactor is required. In Fig. 11 and Fig. 12, the snow melting controller is used to control the three-phase connected heating cables through a contactor.



GROUP CONTROL

Multiple single-phase or three-phase circuits may be activated by a single snow melting controller or thermostat (group control).

The SMPG power distribution panel is designed to control snow melting circuits installed in medium sized areas. This panel is available in single-phase (SMPG1) and three-phase (SMPG3) versions and includes ground fault protection, monitoring, and control for snow melting systems. The snow melting system is energized after the integrated snow controller receives an input from any of the remote sensors.

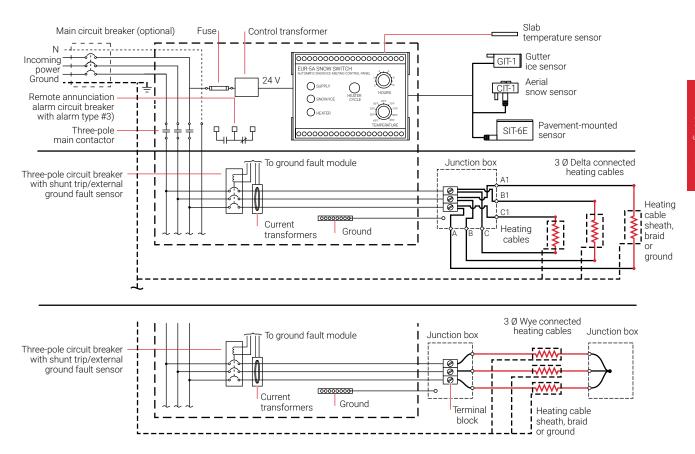


Fig. 16 Typical wiring diagram of group control with SMPG3

TABLE 7 POWER DISTRIBUTION

Catalog number	Description
Power Distribution and Control Panels	
SMPG1	Single-phase power distribution panel that includes ground-fault protection, monitoring, and control for snow melting systems. Single-phase voltages include 208 and 277 V. Refer to the SMPG1 data sheet (H57680) for information on selecting a control panel. If standard configurations do not meet your requirements, contact your nVent representative for a quotation on a custom SMPG1 panel.
SMPG3	Three-phase power distribution panel that includes ground-fault protection, monitoring, and control for snow melting systems. Three-phase voltages include 208, 480, and 600 V. Refer to the SMPG3 data sheet (H57814) for information on selecting a control panel. If standard configurations do not meet your requirements, contact your nVent representative for a quotation on a custom SMPG3 panel.

Example: Surface Snow Melting System

Automatic snow melting controller	APS-4C
Quantity	1
Pavement-mounted sensor	SIT-6E
Quantity	1

Example: Surface Snow Melting System for Stairs

Slab sensing thermostat	ECW-GF
Quantity	1

Example: Surface Snow Melting System for Wheel Tracks

Automatic snow melting controller	APS-4C
Quantity	1
Overhead snow sensor	CIT-1
Quantity	1

Su	rface Snow Melting
1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

Step 8 Select the accessories

TABLE 8 ACCESSORIES

A typical RAYCHEM snow melting system consists of several accessories. All of the accessories work together to provide a safe and reliable snow melting system that is easy to install and maintain.

We recommend using the following as appropriate.

Catalog number	Description	Standard packaging	Usage
HARD-SPACER- GALV-25MM-25M	Galvanized steel prepunched strapping	82 ft (25 m) rolls	No. rolls = 0.005 x area (ft²) No. rolls = 0.05 x area (m²)
HARD-SPACER-SS- 25MM-25M	Stainless steel prepunched strapping	82 ft (25 m) rolls	No. rolls = 0.005 x area (ft²) No. rolls = 0.05 x area (m²)
SMCS	Snow melt caution sign Dimensions 6 x 4 in (150 x 100 mm)	1	1 minimum per system
D1297TERM4	A cast aluminum junction box (Type 3) for installation in nonhazardous and CID2 locations. Three 1/2" NPT entries on bottom, provided with plugs. Includes 4-pole terminal block (CSA - 600 V, 65 A, 18 - 6 AWG; UL - 300 V, 65 A, 18 - 6 AWG). External mounting feet. CSA approved for Class I, Div. 2, Groups A, B, C, and D. Enclosure dimensions: 6 in x 6 in x 4 in (150 mm x 150 mm x 100 mm).	1	

Example: Surface Snow Melting System

Junction box	Contractor supplied	
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M	
Quantity	3	
Snow melt caution sign	SMCS	
Quantity	2	
¹ Only required for two-pour slab const	ruction	

Example: Surface Snow Melting System for Stairs

Example. Our face on ow menting 0350	
Junction box	D1297TERM4
Quantity	1
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M
Quantity	1
Snow melt caution sign	SMCS
Quantity	1

¹ Only required for two-pour slab construction

Example: Surface Snow Melting System for Wheel Tracks

Junction box	D1297TERM4
Quantity	1
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M
Quantity	1
Snow melt caution sign	SMCS
Quantity	1

ly required for two-p

Quantity	1
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M
Quantity	1
Snow melt caution sign	SMCS
Quantity	1
¹ Only required for two-pour slab const	ruction

Step Complete the Bill of Materials

If you used the Design Worksheet to document all your design parameters, you should have all the details you need to complete the Bill of Materials.

1.	Determine design conditions
2.	Determine the required watt density
3.	Determine the total area to be protected
4.	Select the heating cable
5.	Determine heating cable spacing
6.	Determine the electrical parameters
7.	Select the control system and power distribution
8.	Select the accessories
9.	Complete the Bill of Materials

Surface Snow Melting

RAYCHEM MI SYSTEM SURFACE SNOW MELTING DESIGN WORKSHEET

Step Determine design conditions Application and Supply environment Size and layout voltage Phase **Control method** Slab surface area (ft² / m²): ____ Ramp surface area (ft² / m²): Stairs Number of stairs: ____ Stair width (ft/m): Riser height (in/cm): _____ □ Surface snow melting 🖵 120 V □ Automatic snow Stair depth (in/cm): □ 208 V Geographical location: melting controller Landing surface area (ft² / m²): _____ 240 V □ Single-phase □ Slab-sensing 🖵 277 V Wheel tracks Paving material □ Three-phase thermostat □ Concrete Track length (ft/m): _____ 🗅 347 V □ Manual on/off □ Asphalt Concrete joints: □ 480 V control Pavers Surface drains: _____ 🗅 600 V Location of area structures: ____ Other information as appropriate: **Example:** ✓ Surface snow melting ✓ Automatic snow ✓ Philadelphia, PA Ramp surface: 45 ft x 12 ft ✓ 480 V ✓ Three-phase melting controller ✓ Concrete ramp Step Determine the required watt density Surface snow melting system for slabs, ramps, stairs, and wheel tracks: See Table 1 **Required watt density:** Geographical location: Paving material: **Example: Surface Snow Melting System** Ramp surface Geographical location: Philadelphia, PA (from Step 1) Paving material: Concrete (from Step 1) 35 W/ft² (from Table 1) Required watt density:

Raychem-DG-H57045-MISurfaceSnowMelting-EN-1812

Surface Snow Melting – MI

Total ramp/slab surface are			
Length (ft/m) x –	Width (ft/m) =		Surface area to be protected (ft²/m²)
For large areas and areas u	ising a three-phase voltage supply		
Length (ft/m) / No.	of subsections = Length of each	x	=
	subsection (ft/m)		
Note: For three-phase voltage	ge supplies, use multiples of three equal	subsections.	
Example: Surface Snow N	lelting System		
Ramp			
	of the ramp for three-phase application		
45 ft / 3 =	= 15 ft Length of each subsection (ft) x -	12 ft =	180 ft ²
Length (ft)	Length of each subsection (ft)	Width (ft)	Subsection area to be protected (ft ²)
Stairs Calculate the heating cable	e needed for stairs and landing		
Stairs Calculate the heating cable Determine the number of Stair depth: < 10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs		
Stairs Calculate the heating cable Determine the number of Stair depth: <10.5 Stair depth: 10.5–1 Cable runs needed: Calculate the heating cable	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs		
Stairs Calculate the heating cable Determine the number of Stair depth: < 10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs		=Length of cable for stairs (ft/m)
Stairs Calculate the heating cable Determine the number of Stair depth: <10.5 Stair depth: 10.5–1 Cable runs needed: Calculate the heating cable	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs \overline{r} x \overline{r} (27 cable runs) + (2		
Stairs Calculate the heating cable Determine the number of Stair depth: < 10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs $\overline{ns \text{ per stair}} \times \frac{1}{\text{Stair width (f/m)}} + (2$ airs)		
Stairs Calculate the heating cable Determine the number of Stair depth: <10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs $x - \frac{1}{5}$ (27–30 cm): 3 cable runs $x - \frac{1}{5}$ (27–30 cm): 3 cable runs $x - \frac{1}{5}$ (27–30 cm): 4 cm) (27–30 cm): 4 cm) (27–30 cm); 5 cm) (27–30 cm) (27–30 cm); 5 cm) (27–30 cm); 5 cm) (27-30 cm); 5 cm) (27–30 cm); 5 cm) (27-30 cm); 5 cm	x)] Riser height (ft/m)	
Stairs Calculate the heating cable Determine the number of Stair depth: <10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs ns per stair $x = \frac{1}{3}$ (length for stairs) ble length for landing $x = \frac{1}{2}$ (2) / 4.5 =	x)] Riser height (ft/m)	Eulistic English of cable for stairs (ft/m)
Stairs Calculate the heating cable Determine the number of Stair depth: <10.5	e needed for stairs and landing cable runs needed in (27 cm): 2 cable runs 2 in (27–30 cm): 3 cable runs length for stairs $x = \frac{1}{3}$ (length for stairs) $x = \frac{1}{3}$ ble length for landing $\frac{1}{2}$ $x = \frac{1}{3}$ $x = \frac{1}{3}$	x)] Riser height (ft/m)	=Length of cable for stairs (ft/m)

Wheel tracks

Wheel track length: _____

Step Select the heating cable

Surfaces: See Table 2 and Table 3.

p 2)
p 3)
'

Watt density (W/ft²) (W/m²)XArea (ft²/m²)=Required watts for area (W)

Heating cable catalog number:		
Cable wattage:		
Cable voltage:		
Heating cable length:	·	

Number of cables = Number of subsection areas

Example: Surface Snow Melting Syst	em	
Supply voltage:	480 V, three-phase (from Step 1)	
Required watt density for ramp:	35 W/ft ² (from Step 2)	
Subsection area (for 3 equal areas):	180 ft ² (from Step 3)	
Required watts (for each subsection):	35 W/ft ² x 180 ft ² = 6300 W	
Heating cable catalog number:	SUB20	
Cable wattage:	6450 W	a configuration)
Cable voltage: Heating cable length:	480 V (for cables connected in Delta 340 ft	a configuration)
Number of cables:	3 (one cable required for each subs	ection)
Stairs: See Table 4		
Supply voltage:		. (from Step 1)
Required watt density:		(from Step 2)
Total heating cable length required:		(from Step 3)
Heating cable catalog number:		
Cable wattage:		
Cable voltage:		
Heating cable length:		
Number of cables:		-
Installed watt density:		(from Table 4)
Wheel Tracks: See Table 5		
Supply voltage:		_ (from Step 1)
Wheel track length:		_
Heating cable catalog number:		_
Cable wattage:		_
Cable voltage:		_
Heating cable length:		_
Number of cables:		_

Step 🖪 Determine the heating cable	e spacing		
Surfaces			
Imperial (x 12 in) Surface area (ft²)	/ Heating cable length (ft)	=	Heating cable spacing (in
Metric (x 100 c	m) /	=	Heating cable spacing (cm
Round to the nearest 1/2 in o	r 1 cm to obtain cable spacing.		
Example: Surface Snow Melting Sy	stem		
Subsection area:	180 ft ² (from Step 3)		
Heating cable catalog number:	SUB20 (from Step 4)		
Heating cable length:	340 ft (from Step 4)		
Cable spacing			
180 ft ² (x 12)	/ Heating cable length (ft)	=	6.4 in rounded to 6.5 in
Surface area (ft ²)	Heating cable length (ft)		Heating cable spacing (in
STAIRS			
Stair depth:		(from Step 1)	
Cable spacing – stairs:		(refer to Step 5)	
Cable spacing – landing:		(refer to Step 5)	
Wheel Tracks: See Table 5			
Wheel Tracks: See Table 5 Paving material:		(from Step 1)	
		,	

Step Determine the electrical parameters	
Determine circuit breaker rating and number of circuits	
Circuit breaker rating (A) Number of circuit breaker	ers
For single-phase circuit	
Load current = Heating cable current (from selection tables)	
(x 1.25) = Load current (A) X 1.25) =	= Circuit breaker rating (A)
For Delta connected three-phase circuit	
Load current = Heating cable current (from selection tables) x 1.732	
(Load current (A) x 1.25) = Minimum circuit breaker rating (A)	= Circuit breaker rating (A)
For Wye connected three-phase circuit	
Load current = Heating cable current (from selection tables)	
(Load current (A) x 1.25) = Minimum circuit breaker rating (A)	= Circuit breaker rating (A)
Determine transformer load	
For cables of equal wattage	
(= Transformer load (kW)
When cable wattages are not equal	
(= Transformer load (kW)
Example: Surface Snow Melting System	
For Delta connected three-phase circuit	
Heating cable catalog number:SUB20 (from Step 4)Number of heating cables:3 (from Step 4)Cable power output:6450 W (from Step 4)Load current:13.4 A (from Table 2) x 1.732 = 23.2 A	
(<u>23.2 A</u> x 1.25) = <u>29.0 A</u>	30 A
Load current (A) Minimum circuit breaker rating (A)	Circuit breaker rating (A)
(<u>6450 W</u> x <u>3</u>) / 1000	=19.4 kW
Cable (W) Number of cables	Transformer load (kW)

Step 🖬 Select the control system and power distribution

Control Systems

See TABLE 6 Control Systems.

Thermostats, controllers and accessories	Description	Quantity
ECW-GF	Electronic thermostat with 25-ft sensor	
ECW-GF-DP	Remote display panel for ECW-GF	
PD Pro	Automatic snow and ice melting controller	
GF-Pro	Automatic snow and ice melting controller	
MI-GROUND-KIT	Grounding kit for nonmetallic enclosures	
APS-3C	Automatic snow melting controller	
APS-4C	Automatic snow melting controller	
SC-40C	Satellite contactor	
CIT-1	Overhead snow sensor	
□ SIT-6E	Pavement-mounted sensor	
RCU-3	Remote control unit for APS-3C	
RCU-4	Remote control unit for APS-4C	
ACS-UIT2	ACS-30 user interface terminal	
□ ACS-PCM2-5	ACS-30 power control panel	
ProtoNode-RER	Multi-protocol gateway	
□ RTD3CS	Resistance temperature device for RAYCHEM ACS-30	
RTD10CS	Resistance temperature device for RAYCHEM ACS-30	
RTD200	Resistance temperature device for RAYCHEM ACS-30	
□ RTD50CS	Resistance temperature device for RAYCHEM ACS-30	

Power Distribution and Control Panels

See TABLE 7 Power Distribution.

Power distribution and control panels	Description	Quantity
SMPG1	Single-phase power distribution panel	
SMPG3 Three-phase power distribution panel		
Example: Surface Snow Melting	System	
✓ APS-4C	Automatic snow melting controller	1
✓ SIT-6E	Pavement-mounted sensor	1

Step Select the accessories

See TABLE 8 Accessories.		
Accessories	Description	Quantity
 HARD-SPACER-GALV-25MM-25M HARD-SPACER-SS-25MM-25M SMCS D1297TERM4 	Galvanized steel prepunched strapping Stainless steel prepunched strapping Snow melt caution sign Cast aluminum junction box	
Example: Surface Snow Melting Syst ✓ ✓ HARD-SPACER-GALV-25MM-25 ^{M1} ✓ SMCS ¹ Only required for two-pour slab cons	Junction box Prepunched strapping Snow melt caution sign	(contractor supplied) 3 2

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

SURFACE SNOW MELTING AND ANTI-ICING – ELECTROMELT SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM ElectroMelt heating cable surface snow melting and anti-icing system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	
How to Use this Guide	
Safety Guidelines	178
Warranty	178
SYSTEM OVERVIEW	
Typical System	
Self-Regulating Heating Cable Construction	
Approvals	181
SURFACE SNOW MELTING AND ANTI-ICING APPLICATIONS	
SURFACE SNOW MELTING AND ANTI-ICING DESIGN	
Design Step by Step	
Step 1 Determine design conditions	
Step 2 Select the heating cable	
Step 3 Determine the required watt density	
Step 4 Determine heating cable spacing	
Step 5 Determine the total area to be protected	
Step 6 Determine heating cable length	
Step 7 Determine the electrical parameters	
Step 8 Select the connection kits and accessories	
Step 9 Select the control system and power distribution	
Step 10 Complete the Bill of Materials	
ELECTROMELT SYSTEM SUDEACE SNOW MELTING AND	

ELECTROMELT SYSTEM SURFACE SNOW MELTING AND ANTI-ICING DESIGN WORKSHEET......204

INTRODUCTION

RAYCHEM ElectroMelt heating cable systems can be used as a surface snow melting system when installed in concrete pavement or under paving stones. It can also be used as an anti-icing system but only when installed in concrete pavement.

Important: ElectroMelt is not approved for use in asphalt.

If your application conditions are different, or if you have any questions, contact your nVent representative or call (800) 545-6258.

How to Use this Guide

Safety Guidelines

This design guide presents nVent recommendations for designing an ElectroMelt surface snow melting and anti-icing system. It provides design and performance data, electrical sizing information, and heating-cable layout suggestions. Following these recommendations will result in a reliable, energy-efficient system.

Follow the design steps in the section "Surface Snow Melting and Anti-Icing Design," page 182 and use the "ElectroMelt System Surface Snow Melting and Anti-Icing Design Worksheet," page 204 to document the project parameters that you will need for your project's Bill of Materials.

Other Required Documents

This guide is not intended to provide comprehensive installation instructions. For complete ElectroMelt surface snow melting system and anti-icing installation instructions, please refer to the following additional required documents:

- ElectroMelt System Installation and Operation Manual (H58086)
- Additional installation instructions that are included with the connection kits, thermostats, controllers and accessories

If you do not have these documents, you can obtain them from the nVent web site at nVent.com.

For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

This symbol identifies particularly important safety warnings that must be followed.

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Warranty

An extension of the limited warranty period to ten (10) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

nVent standard limited warranty applies to RAYCHEM Snow Melting Systems.

The RAYCHEM ElectroMelt system provides surface snow melting and anti-icing for concrete surfaces and pavement. The ElectroMelt system uses a self-regulating heating cable that reduces heat output automatically as the pavement warms, resulting in lower energy use, and eliminating the possibility of overheating. The system includes heating cable, connection kits, junction boxes, a control system and sensors, power distribution panels, and the tools necessary for a complete installation.

Typical System

A typical system includes the following:

- ElectroMelt self-regulating heating cable
- Connection kits and accessories
- Snow controller and sensors
- Power distribution

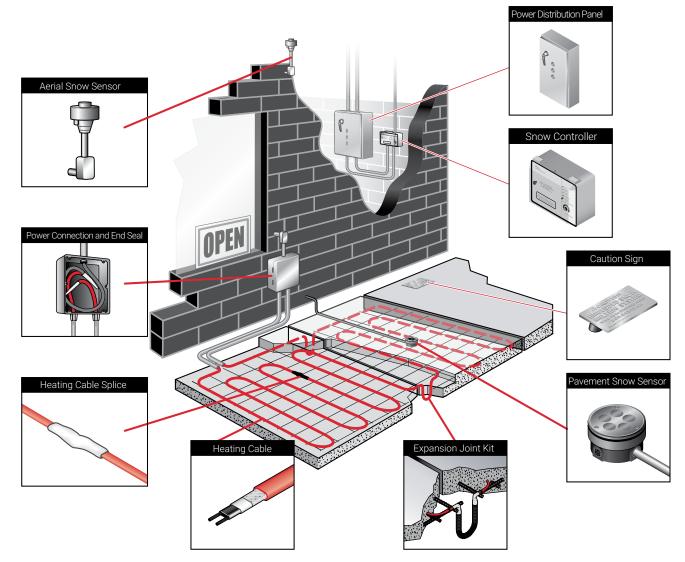
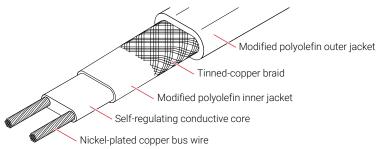
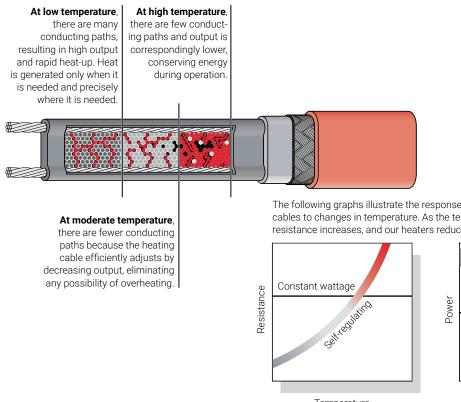
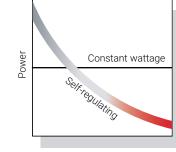


Fig. 1 Typical ElectroMelt system

Self-Regulating Heating Cable Construction

The ElectroMelt self-regulating heating cable is embedded in concrete pavement to melt snow and ice that might otherwise accumulate on the surface. The heating cable responds to the local concrete temperature, increasing heat output when concrete temperature drops and decreasing heat output when concrete temperature rises. The self-regulating heating cable cannot overheat and destroy itself, even if overlapped in the concrete, and therefore does not require the use of overlimit thermostats.


Fig. 2 ElectroMelt heating cable construction

With self-regulating technology, the number of electrical paths between bus wires changes in response to temperature fluctuations. As the temperature surrounding the heater decreases, the conductive core contracts microscopically. This contraction decreases electrical resistance and creates numerous electrical paths between the bus wires. Current flows across these paths to warm the core.

As the temperature rises, the core expands microscopically. This expansion increases electrical resistance and the number of electrical paths decreases. The heating cable automatically reduces its output.

The following graphs illustrate the response of self-regulating heating cables to changes in temperature. As the temperature rises, electrical resistance increases, and our heaters reduce their power output.

Temperature

Temperature

Fig. 3 Self-regulating heating cable technology

The ElectroMelt surface snow melting and anti-icing system is UL Listed and CSA Certified for use in nonhazardous locations.

SURFACE SNOW MELTING AND ANTI-ICING APPLICATIONS

SURFACE SNOW MELTING

Surface snow melting systems prevent the accumulation of snow on ramps, slabs, driveways, sidewalks, platform scales, and stairs under most snow conditions.

ANTI-ICING

Anti-icing systems keep the surface temperature above freezing at all times to prevent ice formation. Anti-icing applications require a higher watt density and longer hours of operation than a surface snow melting system.

APPLICATION REQUIREMENTS AND ASSUMPTIONS

The design for a standard surface snow melting and anti-icing application is based on the following:

Reinforced Concrete

- 4 to 6 inches (10 to 15 cm) thick
- Placed on grade
- Standard density

Pavers

- Concrete pavers 1 to 1 1/2
- (2.5 to 4 cm) inches thick
- Placed on concrete or mortar base on grade

Heating cable

- Secured to reinforcement steel or mesh
- Located 1 1/2 to 2 inches (4 to 6 cm) below finished surface

Heating cable

- Secured to mesh
- Embedded in concrete or mortar base below the pavers

For products and applications not covered by this guide, contact your nVent representative for design assistance. Using proprietary computer modeling, nVent can design the appropriate system for these applications.

The following are examples of applications not addressed in this design guide:

- Concrete thinner than 4 inches (10 cm)
- Concrete thicker than 6 inches (15 cm)
- Lightweight concrete
- Concrete with pavers thicker than 1 1/2 inches (4 cm)
- Ramps and walkways with air below
- Concrete without reinforcement
- · Retrofitting of heating cable to existing pavement
- Pavers composed of material other than concrete

SURFACE SNOW MELTING AND ANTI-ICING DESIGN

This section details the steps necessary to design your application. The examples provided in each step are intended to incrementally illustrate sample designs from start to finish. As you go through each step, use the "ElectroMelt System Surface Snow Melting and Anti-Icing Design Worksheet," page 204 to document your project parameters, so that by that end of this section you will have the information you need for your Bill of Materials.

Design Step by Step

SnoCalc is an online design tool available to help you create surface snow melting designs and layouts. It is available at nVent.com.

Your system design requires the following essential steps:

- 1 Determine design conditions
- 2 Select the heating cable
- 3 Determine the required watt density
- 4 Determine heating cable spacing
- 5 Determine the total area to be protected
- 6 Determine heating cable length
- 7 Determine the electrical parameters
- 8 Select the connection kits and accessories
- **9** Select the control system and power distribution
- 10 Complete the Bill of Materials

Sur	face Snow Melting and Anti-Icing	S
1.	Determine design conditions	
2.	Select the heating cable	
3.	Determine the required watt density	
4.	Determine heating cable spacing	
5.	Determine the total area to be protected	
6.	Determine heating cable length	
7.	Determine the electrical parameters	
8.	Select the connection kits and accessories	
9.	Select the control system and power distribution	
10	. Complete the Bill of Materials	

ep 🚺 Determine design conditions

Collect the following information to determine your design conditions: • Application (surface snow melting or anti-icing)

- Application (surface show melting of an
- Environment
 - For surface snow melting: Geographical location
 - For anti-icing: Minimum ambient temperature and average wind speed
- · Paving material
- Size and layout
 - Slab surface area
 - Ramp surface area
- Stairs
 - Number of stairs
 - Width of stair
 - Riser height
 - Depth of stair
 - Landing dimensions
- Wheel tracks
 - Track length
- Concrete joints
- Surface drains
- Location of area structures
- Other information as appropriate
- Supply voltage
- Automatic or manual control method

Note: Drainage must be a primary concern in any snow melting system design. Improper drainage can result in ice formation on the surface of the heated area once the system is de-energized. Ice formation along the drainage path away from the heated area may create an ice dam and prohibit proper draining. If your design conditions may lead to drainage problems, please contact nVent Technical Support for assistance.

PREPARE SCALE DRAWING

Draw to scale the snow melting area and note the rating and location of the voltage supply. Include stairs and paths for melting water runoff. Show concrete joints, surface drains, and location of area structures including post installations for railings, permanent benches, and flagpoles. Measurements for each distinct section of the snow melting application, including stairs, will allow for an accurate system design, including control configuration. Use these symbols to indicate the heating cable expansion and crack-control joints:

- ---- Expansion joint
- ---- Crack-control joint
- Expansion joint kit

Fig. 4 Design symbols

Example: Surface Snow Melting System

Application	Surface snow melting
Geographical location	Buffalo, NY
Size and layout	80 ft x 50 ft (24.4 m x 15.2 m)
Paving material	Concrete slab
Stairs:	
Number of stairs	10
Width of stair	5 ft (1.5 m)
Riser height	6 in (15 cm)
Depth of stair	12 in (30 cm)
Supply voltage	277 V
Phase	Single-phase
Control method	Automatic snow melting controller

Example: Anti-Icing System

Application	Anti-icing
Minimum ambient temperature	10°F (-12°C)
Average wind speed	20 mph (32 km
Size and layout	80 ft x 50 ft (24
Paving material	Concrete slab
Stairs:	
Number of stairs	10
Width of stair	5 ft (1.5 m)
Riser height	6 in (20 cm)
Depth of stair	12 in (30 cm)
Supply voltage	277 V
Phase	Single-phase
Control method	Slab sensing th

Anti ining °C) 32 kmph) ft (24.4 m x 15.2 m)

10
5 ft (1.5 m)
6 in (20 cm)
12 in (30 cm)
277 V
Single-phase
Slab sensing thermostat

Surface Snow Melting and Anti-Icing 1. Determine design conditions 2. Select the heating cable 3. Determine the required watt density 4. Determine heating cable spacing 5. Determine the total area to be protected 6. Determine heating cable length 7. Determine the electrical parameters 8. Select the connection kits and accessories 9. Select the control system and power distribution 10. Complete the Bill of Materials

Step **2** Select the heating cable

nVent offers the option of two self-regulating heating cables with the ElectroMelt system. Cable selection is independent of application and depends only upon supply voltage. ElectroMelt heating cables must only be powered by single phase voltage. In applications where the power supply is three-phase, all circuits must be wired to provide single-phase voltage to the heating cables. Select the appropriate cable based on the supply voltage available for the application area.

TABLE 1 ELECTROMELT SELF-REGULATING HEATING CABLE

Supply voltage	Catalog number
208 V, 240 V, 277 V	EM2-XR
Example: Surface Snow Mel	ting System
Supply voltage	277 V (from Step 1)
Heating cable	EM2-XR
Example: Anti-Icing System	
Supply voltage	277 V (from Step 1)
Heating cable	EM2-XR

Sur	face Snow Melting and Anti-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the required watt density
4.	Determine heating cable spacing
5.	Determine the total area to be protected
6.	Determine heating cable length
7.	Determine the electrical parameters
8.	Select the connection kits and accessories
9.	Select the control system and power distribution
10	. Complete the Bill of Materials

Step Determine the required watt density

SURFACE SNOW MELTING

For maximum performance from any snow melting system, you must first take into account the local snowfall and icing patterns. A system design that works well in one city may be inadequate in another. The energy required to melt snow varies with air temperature, wind speed, relative humidity, snow density, and the depth of the snow on the pavement.

Table 2 summarizes the required watt density for most major cities in North America based on typical minimum ambient temperatures and the snowfall and icing patterns. Select the city from the list, or closest city, where similar climatic conditions exist.

TABLE 2 REQUIRED WATT DENSITY FOR SURFACE SNOW MELTING

	Watt	Watts/ft ²		s/m²
City	Concrete	Pavers	Concrete	Pavers
USA				
Baltimore, MD	35	40	377	431
Boston, MA	35	40	377	431
Buffalo, NY	40	45	431	484
Chicago, IL	35	40	377	431
Cincinnati, OH	35	40	377	431
Cleveland, OH	35	40	377	431
Denver, CO	35	40	377	431
Detroit, MI	35	40	377	431
Great Falls, MT	50	50	538	538
Greensboro, NC	35	35	377	377
Indianapolis, IN	35	40	377	431
Minneapolis, MN	50	50	538	538
New York, NY	35	40	377	431
Omaha, NE	45	50	484	538
Philadelphia, PA	35	40	377	431
Salt Lake City, UT	35	35	377	377
Seattle, WA	35	35	377	377
St. Louis, MO	35	40	377	431
Canada				
Calgary, AB	45	45	484	484
Edmonton, AB	50	50	538	538
Fredericton, NB	40	45	431	484
Halifax, NS	35	40	377	431
Moncton, NB	40	40	431	431
Montreal, QC	45	45	484	484
Ottawa, ON	45	45	484	484
Prince George, BC	50	55	538	592
Quebec, QC	45	45	484	484
Regina, SK	50	55	538	592
Saskatoon, SK	50	50	538	538
St. John, NB	40	45	431	484
St. John's, NF	35	35	377	377
Sudbury, ON	40	45	431	484
Thunder Bay, ON	50	55	538	592
Toronto, ON	35	40	377	431
Vancouver, BC	35	40	377	431
Winnipeg, MB	50	55	538	592

Note: To provide faster heat-up, the required watt density in Table 2 is greater than what is suggested by ASHRAE.

Example: Surface Snow Melting System

Geographical location Buffalo, NY (from Step 1) Required watt density **40 W/ft² (431 W/m²)** (from Table 2)

ANTI-ICING

From the minimum ambient temperature and average wind speed that you determined in Step 1 for your anti-icing application, use the tables below to determine the required watt density for that application.

TABLE 3 REQUIRED WATT DENSITY FOR ICE-FREE SURFACES W/FT²

Minimum ambient temperature	ļ	Average wind sp	eed during free	zing periods
°F	5 mph	10 mph	15 mph	20 mph
20°F	30	30	35	40
10°F	30	30	35	45
0°F	30	40	45	60
-10°F	30	45	60	80
-20°F	35	55	80	-
-30°F	40	65	-	-
-40°F	45	75	_	_

TABLE 4 REQUIRED WATT DENSITY FOR ICE-FREE SURFACES W/M²

Minimum ambio temperature	ent Average wind speed during freezing periods			
°C	8 kmph	16 kmph	24 kmph	32 kmph
−7°C	323	323	377	431
-12°C	323	323	377	484
-18°C	323	431	484	646
-23°C	323	484	646	861
-29°C	377	592	861	-
-34°C	431	699	-	-
-40°C	484	807	_	_

Note: This procedure is derived from finite model studies of 4-inch slabs and is applicable to standard concrete pavement from 4 to 6 inches thick placed directly on grade. If your application involves other materials or construction, contact your nVent representative.

Example: Anti-Icing System

Minimum ambient temperature Average wind speed Required watt density 10°F (-12°C) (from Step 1) 20 mph (32 kmph) (from Step 1) 45 W/ft² (484 W/m²)

(from Table 3 and Table 4)

Surface Snow Melting and Anti-Icing		
1.	Determine design conditions	
2.	Select the heating cable	
3.	Determine the required watt density	
4.	Determine heating cable spacing	
5.	Determine the total area to be protected	
6.	Determine heating cable length	
7.	Determine the electrical parameters	
8.	Select the connection kits and accessories	
9.	Select the control system and power distribution	
10	Complete the Bill of Materials	

Step Determine heating cable spacing

SURFACES

To determine your heating cable spacing, you need to know your applications's power output and required watt density.

The power output from the ElectroMelt heating cable depends on the supply voltage used in the application. Table 5 lists power output per linear foot of heating cable determined by the supply voltage. Divide this figure by the required watt density that you determined in Step 3. You will get the required heating cable spacing in feet or meters as applicable. Multiply this figure by 12 inches or by 100 centimeters to determine your heating cable spacing.

TABLE 5 HEATING CABLE SPACING IN CONCRETE

Supply voltage	Catalog number	Power output W/ft (W/m)
208 V	EM2-XR	30 (98)
240 V	EM2-XR	32 (105)
277 V	EM2-XR	34 (112)

To determine cable spacing required for surface snow melting and anti-icing

Heating cable spacing (in) =	(W/ft power output of cable per Table 5) x 12 in
	W/ft ² requirement from Step 3
Heating cable spacing (cm) =	(W/m power output of cable per Table 5) x 100 cm
	W/m ² requirement from Step 3

Round answer to nearest whole number of inches or centimeters.

Example: Surface Snow Melting System

	Rounded to 10 in
Spacing	(34 W/ft x 12 in) /40 W/ft ² = 10.2 in
Power output	34 W/ft (112 W/m²) (from Table 5)
Heating cable	EM2-XR (from Step 2)
Supply voltage	277 V (from Step 1)

$(112 \text{ W/m} \times 100 \text{ cm}) / 431 \text{ W/m}^2 = 26 \text{ cm}$

Example: Anti-Icing System

Supply voltage Heating cable Power output Spacing

277 V (from Step 1) EM2-XR (from Step 2) 34 W/ft (from Table 5) (34 W/ft x 12 in) / 45 W/ft² = 9.1 in Rounded to 9 in

 $(112 \text{ W/m} \times 100 \text{ cm}) / 484 \text{ w/m}^2 = 23.1 \text{ cm}$ Rounded to 23 cm

STAIRS

Heat loss in stairs occurs from the two exposed surfaces: the top of the stair and its side. Watt density requirements are therefore greater for snow melting and antiicing. Rather than calculating heating cable spacing in the stair, refer to Table 6 and determine the number of runs of heating cable per stair based on the depth of the stair. Space the heating cable evenly across the depth of the stair with one run 2 in (5 cm) from the front, or nose, of the stair. This method will provide sufficient watt density for both snow melting and anti-icing.

TABLE 6 HEATING CABLE RUNS PER STAIR

Stair depth	Number of cable runs per stair
Less than 10.5 in (27 cm)	2
10.5–12 in (27–30 cm)	3

For landings in the stairway, use cable spacing as calculated for surfaces. As with stairs, a run of heating cable must be placed 2 in (5 cm) from the exposed edge of the landing leading to the stairs.

Anticipate and design for the addition of railings or other follow on construction that will require cutting or drilling into the concrete as damage to installed heating cable may occur. Allow for at least 4 inches clearance between the heating cable and any planned cuts or holes.

Example: Surface Snow Melting and Anti-Icing System

Litample. Surface Show Menting and	Anti-Icing System
Depth of stair	12 in (30 cm) (from Step 1)
Number of cable runs per stair	3 runs
Spacing	Equally spaced across the width of the stair with one run 2 in (5 cm) from the front edge
	Punction box $s_{t_{1}(1,s_{n})}$
Piser height (15 ⁶ in	standing depth standing depth aft (0,9 m)

Fig. 5 Typical heating cable layout for concrete stairs

Sur	face Snow Melting and Anti-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the required watt density
4.	Determine heating cable spacing
5.	Determine the total area to be protected
б.	Determine heating cable length
7.	Determine the electrical parameters
8.	Select the connection kits and accessories
9.	Select the control system and power distribution
10	.Complete the Bill of Materials

Step 5 Determine the total area to be protected

SURFACES

To determine the total amount of heating cable, you need to determine the surface area you will be protecting from snow and ice accumulation. If assistance is required in designing for irregular shaped areas, please contact your nVent representative.

Example: Surface Snow Melting System

80 ft x 50 ft = 4000 ft² (24.4 m x 15.2 m = 370.8 rounded to = 371 m²)

Example: Anti-Icing System

Total area of concrete slab

80 ft x 50 ft = 4000 ft² (24.4 m x 15.2 m = 370.8 rounded to = 371 m²)

WHEEL TRACKS

To reduce power consumption for concrete driveways, it may be sufficient to provide snow melting for only the wheel tracks.

Design wheel track applications with the same spacing used for concrete slabs. Heating cable should run to the edge of each side of the wheel track and be laid in a serpentine pattern along the length of the wheel track.

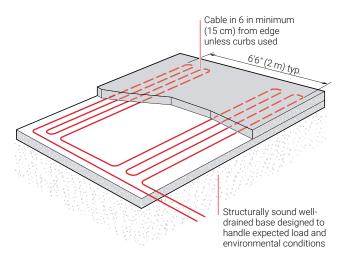


Fig. 6 Wheel track example

STAIRS

Surface area of the stairs is not required to determine heating cable required.

Su	face Snow Melting and Anti-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the required watt density
4.	Determine heating cable spacing
5.	Determine the total area to be protected
6.	Determine heating cable length
7.	Determine the electrical parameters
8.	Select the connection kits and accessories
9.	Select the control system and power distribution
10	. Complete the Bill of Materials

Step 6 Determine heating cable length

SURFACES

Calculate the heating cable length by dividing the total heated area by the heating cable spacing calculated in the previous steps. In Step 8, you will need to add additional heating cable for connection kits and end terminations which will then give you the total heating cable length.

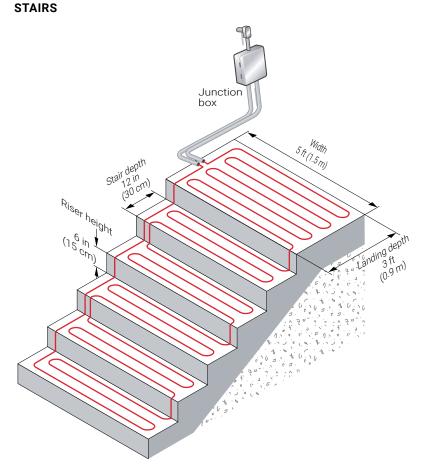
Calculate the heating cable length for the surface as follows:

Heating cable length =

Heated area (ft²) x 12

Heating cable spacing (in)

Heated area (m²) x 100


Heating cable spacing (cm)

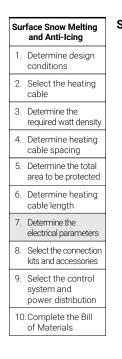
Example: Surface Snow Melting System for Concrete Slab

	-
Total area of concrete slab	4000 ft ² (371 m ²) (from Step 5)
Cable spacing	10 in (26 cm) (from Step 4)
	(4000 ft ² x 12 in) / 10 in spacing = 4800 ft (371 m ² x 100 cm) / 26 cm spacing = 1427 m
Heating cable length	4800 ft (1427 m)

Example: Anti-Icing System for Concrete Slab

Total area of concrete slab	4000 ft ² (371 m ²) (from Step 5)
Cable spacing	9 in (23 cm) (from Step 4)
	(4000 ft ² x 12 in) / 9 in spacing = 5333 ft (371 m ² x 100 cm) / 23 cm spacing = 1613 m
Heating cable length	5333 ft (1613 m)

Fig. 7 Concrete stair example


Use the formula below to determine the length of cable required for stairs. Stair area is not needed for the cable length calculation. Two or three runs of heating cable will be installed per stair as determined in Step 3. For landing areas, use the equation for surfaces.

Length of cable = No. of stairs x [(No. runs per stair x width of stair) + (2 x riser height)] for stair (ft) (m)

Example: Surface Snow Melting and Anti-Icing System for Stairs

Number of stairs	10 stairs (from Step 1)
Number of cable runs per stair	3 runs
Width of stair	5 ft (1.5 m) (from Step 1)
Riser height	6 in (15 cm) convert to 0.5 ft (0.15 m) (from Step 1)
	10 stairs x [(3 x 5 ft) + (2 x 0.5 ft)] = 160 ft 10 stairs x [(3 x 1.5 m) + (2 x 0.15 m)] = 48 m
Heating cable length	160 ft (48 m)

For applications where the landing area is very large or where an expansion joint exists between the stairs and landing, consider the stairs and landing as two separate areas. In these cases, determine the length of cable required for the stairs as shown earlier in this section and select the cable for the landing as shown for ramps, slabs, driveways, sidewalks, platform scales.

Step **D** Determine the electrical parameters

This section will help you determine the electrical parameters for an ElectroMelt system including circuit breaker sizing and maximum circuit length. Total required heating cable length divided by maximum circuit length will determine the number of circuits required for your snow melting solution.

DETERMINE MAXIMUM CIRCUIT LENGTH

To determine maximum circuit length, it is important to establish a minimum startup temperature for the system. The following tables provide maximum circuit lengths based on minimum startup temperature, circuit breaker rating, and supply voltage. Colder temperature startup requires shorter maximum circuit lengths. The use of an automatic system, which energizes the system above $20^{\circ}F$ ($-7^{\circ}C$), ensures that you can use maximum circuit lengths. Manual control systems may require you to use shorter circuit lengths to compensate for startup below $20^{\circ}F$ ($-7^{\circ}C$).

A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers.

TABLE 7MAXIMUM CIRCUIT LENGTH FOR STARTUP AT 20°F (-7°C) INFEET (METERS) USING AN AUTOMATIC SNOW CONTROL SYSTEM

Circuit	Heating cable supply voltage								
Breaker (A)	208 V		240 V		277 V	277 V			
15	80	(24)	85	(26)	100	(31)			
20	105	(32)	115	(35)	130	(40)			
30	160	(49)	170	(52)	195	(59)			
40	210	(64)	230	(70)	260	(79)			
50	265	(81)	285	(87)	325	(99)			

TABLE 8 MAXIMUM CIRCUIT LENGTH FOR STARTUP AT 0°F (-18°C) IN FEET (METERS) USING A MANUAL CONTROL SYSTEM

Circuit	Heating cable supply voltage								
Breaker (A)	208 V		240 V		277 V				
15	75	(23)	80	(24)	90	(27)			
20	100	(31)	110	(34)	120	(37)			
30	145	(44)	160	(49)	180	(55)			
40	200	(61)	210	(64)	240	(73)			
50	245	(75)	265	(81)	300	(91)			

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Example: Surface Snow Melting and Anti-Icing System with Automatic Snow Control

Startup temperature Circuit breakers Supply voltage Maximum circuit length 20°F (-7°C) (from Step 1) 50 A 277 V (from Step 1) 325 ft (99 m) (from Table 7)

DETERMINE NUMBER OF CIRCUITS

Use the following formula to determine number of circuits for the system:

Number of circuits = Heating cable length required

Maximum heating cable circuit length

Example: Surface Snow Melting

Surfaces

Total heating cable length	4800 ft (1427 m) (from Step 6)
Maximum circuit length	325 ft (99 m) (from above)
Number of circuits	4800 / 325 = 14.8 rounded to 15 circuits
Stairs	
Total heating cable length	160 ft (48 m) (from Step 6)
Maximum circuit length	325 ft (99 m) (from above)
Number of circuits	160 / 325 = 0.5 rounded to 1 circuit

Example: Anti-Icing System

Surfaces

Total heating cable length	5333 ft (1613 m) (from Step 6)
Maximum circuit length	325 ft (99 m)
Number of circuits	5333 / 325 = 16.4 rounded to 17 circuits
Stairs	
Total heating cable length	160 ft (48 m) (from Step 6)
Maximum circuit length	325 ft (99 m) (from above)
Number of circuits	160 / 325 = 0.5 rounded to 1 circuit

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of load on all the circuit breakers in the system.

Calculate the Circuit Breaker Load (CBL) as:

	Circuit breaker rating (A) x 0.8 x Supply voltage
CBL (kW) =	1000

Calculate the Total Transformer Load as follows:

If the CBL is equal on all circuit breakers, calculate the Total Transformer Load as:

Total Transformer Load (kW) = CBL x Number of circuits

If the CBL is **not** equal on all circuit breakers, calculate the Total Transformer Load as:

Total Transformer Load (kW) = $CBL_1 + CBL_2 + CBL_3... + CBL_N$

Example: Surface Snow Melting

Circuit breaker load	(50 A x 0.8 x 277 V) / 1000 = 11.1 kW
Transformer Load	11.1 kW x 16 circuits = 177.6 kW rounded to 178 kW
	178 kW

Example: Anti-Icing System

Circuit breaker load	
Transformer load	

(50 A x 0.8 x 277 V) / 1000 = 11.1 kW 11.1 kW x 18 circuits = 199.8 kW rounded to 200 kW **200 kW**

Step Step Select the connection kits and accessories

nVent provides all the connection kits and accessories necessary to satisfy code, approval agency, and warranty requirements for the ElectroMelt system. Additional heating cable will be required for connection kits and end terminations. Adding the additional heating cable allowances needed with the heating cable length required for the layout will give you the total heating cable length required.

Prepare a drawing of your system showing distinct circuits, layout of cables, connection kits, expansion joints, drains, heated pathways for meltwater, power connections, junction boxes, and sensors. Determine length of cable from slab for power connection for all circuits. If possible, avoid crossing expansion, crack control, or other pavement joints. Use the EMK-XEJ expansion joint kit to protect the heating cable if crossing is unavoidable.

Junction boxes must be mounted above grade to prevent water entry. Use an EMK-XJB or equivalent UL Listed or CSA Certified weatherproof junction box. Protect heating cable from slab to junction box inside individual 1-inch rigid metal conduits. Do not penetrate floors or walls with conduit, nor insulate the conduit.

Su	rface Snow Melting and Anti-Icing
1.	Determine design conditions
2.	Select the heating cable
3.	Determine the required watt density
4.	Determine heating cable spacing
5.	Determine the total area to be protected
6.	Determine heating cable length
7.	Determine the electrical parameters
8.	Select the connection kits and accessories
9.	Select the control system and power distribution
10	. Complete the Bill of Materials

TABLE 9 CONNECTION KITS AND ACCESSORIES

	Catalog number	Description	Standa packag	rd ingUsage	Heating cable allowance ¹
Connection Kits					
6 in 15.25 cm Power connection EMK-XP 6 in 15.25 cm	EMK-XP	Power connection and end seal kit	1	1 per circuit	3 ft (1 m) for connection plus conduit length for power connection and conduit length for end seal
10 in 25.4 cm	EMK-XS	Splice kit	1	As required	1 ft (30 cm)

Accessories					
Metal Source ShrinkWrap ^M	EMK-XJR	Jacket repair kit	1	As required	_
	EMK-CT	Nylon cable ties	100/pack	1 per foot of cable used	_
	EMK-XT	Crimping tool	1	-	_
	SMCS	Snow melt caution sign Dimensions: 6 x 4 in (150 x 100 mm)	1	1 minimum per system	_
	EMK-XEJ	Expansion joint kit	1	1 per expansion joint crossing	1 1/2 ft (45 cm)
	EMK-XJB	Junction box Dimensions: 15 1/2 x 11 3/4 x 7 5/8 in (394 x 299 x 194 mm)	1		1–2 ft (30–60 cm) for each end in the junction box Maximum of two circuits per EMK-XJB

¹Allow extra heating cable for ease of component installation.

Example:	Surface	Snow I	Melting S	ystem
-----------------	---------	--------	-----------	-------

Example: Surface Snow Melting System	
Number of circuits	15 for concrete slab + 1 for stairs = 16
Power connection kits	16 power connection kits
Conduit length (from slab to junction box)	
Power connection	15 ft (4.5 m)
End seal	15 ft (4.5 m)
	(15 ft + 15 ft) x 16 circuits = 480 ft (4.5 m + 4.5 m) x 16 circuits = 144 m
Heating cable allowance for each power co	nnection
	3 ft x 16 circuits = 48 ft
	1 m x 16 circuits = 16 m
Total heating cable length required	528 ft (160 m)
Example: Anti-Icing System	
Number of circuits	17 for concrete slab + 1 for stairs = 18
Power connection kits	18 power connection kits
Conduit length (from slab to junction box)	
Power connection	15 ft (4.5 m)
End seal	15 ft (4.5 m)
	(15 ft + 15 ft) x 18 circuits = 540 ft (4.5 m + 4.5 m) x 18 circuits = 162 m
Heating cable allowance for each power co	nnection
	3 ft x 18 circuits = 54 ft
	1 m x 18 circuits = 18 m
Total heating cable length required	594 ft (180 m)

Surface Snow Melting and Anti-Icing

- Determine design conditions
 Select the heating cable
- 3. Determine the required watt density
- 4. Determine heating cable spacing
- Determine the total area to be protected
- 6. Determine heating cable length
- 7. Determine the electrical parameters
- 8. Select the connection kits and accessories
- Select the control system and power distribution
- 10. Complete the Bill of Materials

Step Select the control system and power distribution

Control Systems

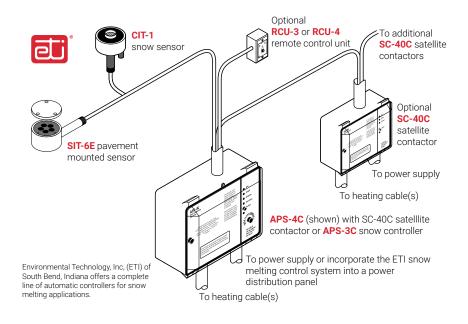
Select a control system from the following three options, but keep in mind that an automatic snow controller offers the highest system efficiency and the lowest operating cost.

- Manual on/off control
- Slab sensing thermostat
- Automatic snow melting controller

If the current rating of the control means is exceeded, all three methods will require contactors sized to carry the load. Each method offers a tradeoff balancing initial cost versus energy efficiency and ability to provide effective snow melting. If the system is not energized when required, snow will accumulate. If the system is energized when it is not needed, there will be unnecessary power consumption. Choose the control method that best meets the project performance requirements. For additional information, refer to the "Typical Control Diagrams," Table 7, or contact your nVent representative for details.

Manual On/Off Control

A manually controlled system is operated by a switch that controls the system power contactor. This method requires constant supervision to work effectively. A manual system can be controlled by a building management system.


Slab Sensing Thermostat

A slab sensing thermostat can be used to energize the system whenever the slab temperature is below freezing, but is not energy efficient when used as the sole means of control. The slab sensing thermostat is recommended for all snow melting applications, even when an automatic snow controller is used, and is required for all asphalt and paver installations (for asphalt, it prevents surface damage due to overheating).

Automatic Snow Melting Controller

With an automatic snow controller, the snow melting system is automatically energized when both precipitation and low temperature are detected. When precipitation stops or the ambient temperature rises above freezing, the system is de-energized. In addition, a slab sensor de-energizes the system after the slab reaches the slab sensing set point even if freezing precipitation is still present. Using an automatic snow controller with a slab sensor offers the most energyefficient control solution.

For areas where a large number of circuits are required, the RAYCHEM ACS-30 can be used. The Surface Snow Melting control mode in the ACS-30 includes an External Device control option. This option allows a Snow/Moisture sensing controller (from Table 10) to be integrated into the ACS-30 system. Note that sensors (snow or gutter) cannot be directly connected to the ACS-30 system. Refer to the ACS-30 Programming Guide (H58692) for more information on system setup.

Fig. 8 Automatic snow melting control system

	Catalog number	Description
Slab Sensing Therr	nostat	
ECW-GF		Electronic ambient sensing controller with 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a Type 4X rated enclosure. The controller features an AC/DC dry alarm contact relay.
e		An optional ground-fault display panel (ECW-GF-DP) that can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
0 0 0 0	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
	PD Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The PD Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The PD Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds.
	GF Pro	Automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments. The GF Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The GF Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds. Features a built-in 30 mA, self-testing Ground-Fault Equipment Protection (GFEP) capability, digitally filtered to minimize false tripping. A ground-fault alarm must be manually reset using the Test/Reset switch before heater operation can continue.

TABLE 10 CONTROL SYSTEMS

TABLE 10 CONTROL SYSTEMS

	Catalog number	Description
Automatic Snow M	lelting Controllers	
	APS-3C	Automatic snow melting controller housed in a Type 3R enclosure provides effective, economical automatic control of all snow melting applications. Features include: 120 V or 208–240 V models, 24-A DPDT output relay and an adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm)
	APS-4C	Automatic snow melting controller housed in a Type 3R enclosure provides effective, economical automatic control of all snow melting applications. The APS-4C can operate with any number of SC-40C satellite contactors for larger loads. Features include: 277 V single-phase or 208–240, 277/480, and 600 V three-phase models, built-in 3-pole contactor, integral 30 mA ground-fault circuit interrupter and an adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm)
	SC-40C	Satellite contactor power control peripheral for an APS-4C snow melting controller, housed in a Type 3R enclosure. Features include: 277 V single-phase or 208–240, 277/480 and 600 V three-phase models, built-in 3-pole contactor and integral 30 mA ground-fault circuit interrupter. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6 in (292 mm x 232 mm x 152 mm)

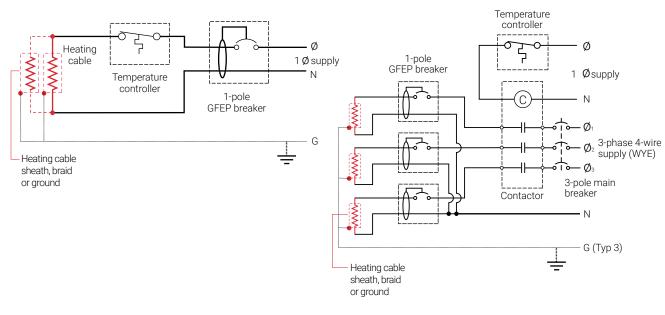
Snow Melting and Gutter De-Icing Sensors and Accessories

CIT-1	Overhead snow sensor that detects precipitation or blowing snow at ambient temperatures below 38°F (3.3°C). For use with either an APS-3C or APS-4C automatic snow melting controller.
SIT-6E	Pavement-mounted sensor signals for the heating cable to turn on when the pavement temperature falls below 38°F (3.3°C) and precipitation in any form is present. Microcontroller technology effectively eliminates ice bridging while ensuring accurate temperature measurement. For use with either an APS-3C or APS-4C automatic snow melting controller.
RCU-3	The RCU–3 provides control and status display to the APS–3C controller from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of APS-3C setting.
RCU-4	The RCU–4 provides control and status display to the APS–4C controller and SC-40C Satellite Contactor from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of the APS-4C or SC-40C setting.

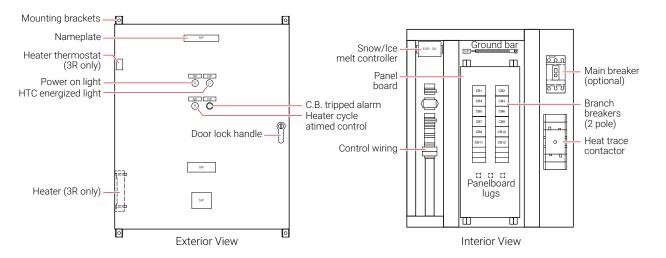
TABLE 10 CONTROL SYSTEMS

	Catalog number	Description
Electronic Control	llers	
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in various commercial applications such as pipe freeze protection, roof and gutter de-icing, surface snow melting, hot water temperature maintenance and floor heating. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gate- way for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers. The ProtoNode-RER is for BACnet® or Metasys® N2 systems.
	RTD-200 RTD10CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers.
	RTD50CS	RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing
		RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing
		POWER DISTRIBUTION
		Single Circuit Control

Single Circuit Control


Heating cable circuits that do not exceed the current rating of the selected temperature control can be switched directly (see Fig. 9).

Group Control


If the current draw exceeds the switch rating, or if the controller will activate more than one circuit, or group control, an external contactor must be used (see Fig. 9).

Large systems with many circuits should use an SMPG power distribution panel. The SMPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for surface snow melting and anti-icing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with an ambient-sensing thermostat, individual electronic, or duty cycle controller. Single circuit control

Group control

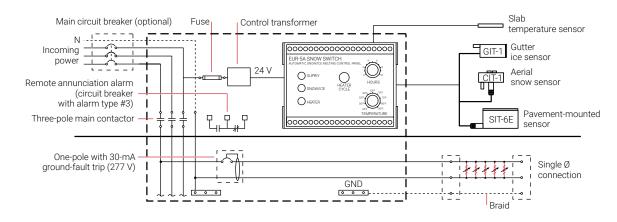


Fig. 11 Typical wiring diagram of group control with SMPG1

TABLE 11 POWER DISTRIBUTION

	Catalog number	Description
Power Distribution and	d Control Panels	
	SMPG1	Single-phase power distribution panel that includes ground-fault protection, monitoring, and control for snow melting systems. Single-phase voltages include 208 and 277 V.
		If standard configurations do not meet your needs, custom SMPG panels are available and processed under the catalog number SMPG-GENERAL, part number P000000763. Please contact your nVent representative for a custom SMPG panel quotation.

Example: Surface Snow Melting System

This system has 16 circuits and will require a specially designed control panel. As many as eight SIT-6E sensors can be used in this configuration. The amount depends upon designer preference.

Example: Anti-Icing System

This system has 18 circuits and will require a specially designed control panel. As many as eight SIT-6E sensors can be used in this configuration. The amount depends upon designer preference.

Step 10 Complete the Bill of Materials

If you used the Design Worksheet to document all your design parameters, you should have all the details you need to complete the Bill of Materials.

1.	Determine design conditions
2.	Select the heating cable
3.	Determine the required watt density
4.	Determine heating cable spacing
5.	Determine the total area to be protected
6.	Determine heating

Surface Snow Melting & Anti-Icing

0.	cable length
7.	Determine the

- electrical parameters
 8 Select the connection
- Select the connection kits and accessories
 Select the control
- 9. Select the control system and power distribution

10.Complete the Bill of Materials

ELECTROMELT SYSTEM SURFACE SNOW MELTING AND ANTI-ICING DESIGN WORKSHEET

Step Determine design conditions

Арр	blication	Size and layout			upply oltage	Pł	nase	Co	ontrol method
	Surface snow melting Geographical location:	Slab surface (ft/m) Ramp surface (ft/m)		□	208 V 240 V		Single- phase		Manual on/off control Slab-sensing
	Anti-icing Minimum ambient temperature:	Stairs Number of stairs Width of stair (ft/m) Riser height (in/cm)			277 V				thermostat Automatic snow melting controlle
	Average wind speed duringfreezing periods (mph/kmph):	Depth of stair (in/cm Landing dimensions (ft/m) Wheel tracks							
Pa □ □	ving material Concrete pavement In concrete under paving stones	Track length (ft/m) _							
 ✓ : ✓ : 	ample: Surface snow melting Buffalo, NY Concrete slab	Slab surface: Stairs Number of stairs Width of stair Riser height Depth of stair	80 ft x 10 5 ft 6 in 12 in	50 ft 💉	277 V	~	Single-phase		Automatic snow nelting controller
Ct.	ep 🛛 Select the heating c								
Se	e Table 1 EM2-XR								
	ample: EM2-XR								
Ste	ep 🛙 Determine the requi	red watt density							
	rface snow melting e Table 2			Anti-icing See Table 3	3 and Tat	ole 4	Ļ		
Ge	ographical location:		N	/linimum a	ambient t	em	perature (°F/°C	;):	
Re	quired watt density (W/ft²))(W/m²):					ring freezing p W/ft²)(W/m²):_		ds (mph/kmph):
Ex	ample:								

Geographical location: Buffalo, NY
Required watt density: 40 W/ft ²

Step Determine heating cable spacing

See Table 5

Surfaces

Length

Width

(Heating cable spacing (in)
	pund result to the nearest whole number of inches or centimeters.
Stairs	
Calculate the heating cable needed for stairs and landing	
Determine the number of cable runs needed:	
Depth of stair: <10.5 in (27 cm): 2 cable runs	
Depth of stair: 10.5–12 in (27–30 cm): 3 cable runs	
Cable runs needed:	
Concrete stair depth (in/cm): Number of cable runs:	Spacing:
Example:	
Surfaces	
(34 W/ft x 12 in/ft) / 40 W/ft ²	10 in
$\left(\frac{34 \text{ W/ft}}{\text{Power output (W/ft)}} \times 12 \text{ in/ft}\right) / \frac{40 \text{ W/ft}^2}{\text{Watt density (W/ft^2)}}$	Heating cable spacing (in/cm)
Stairs Note: R	ound result to the nearest whole number of inches or centimeters.
Calculate the heating cable needed for stairs and landing	
Determine the number of cable runs needed:	
Depth of stair: <10.5 in (27 cm): 2 cable runs	
Depth of stair: 10.5–12 in (27–30 cm): 3 cable runs	
Cable runs needed: <u>3</u>	Equally spaced across the width of the
Concrete stair depth (in/cm): Number of cable runs:	
Concrete stair depth (in/cm): Number of cable runs:	Spacing:
Step Determine the total area to be protected	
Surfaces	
Longth (ft/m) X Width (ft/m)	= Surface area to be protected (ft²/m²)
Length (ft/m) Width (ft/m)	Surface area to be protected (π^2/m^2)
Example:	
80 ft 50 ft	4000 ft ²

Surface area to be protected (ft)

SURFACE SNOW MELTING AND ANTI-ICING - ELECTROMELT SYSTEM

Step 🖬 Determine the heating cable length	
Surfaces	
Total concrete slab area (ft²/m²) x 12 in / Heating cable spacing (in/cm)	Heating cable length for surface (ft/m)
Calculate the heating cable for stairs and landing	
No. of stairs $x \left[\left(\frac{1}{\text{No. of runs per stair}} \times \frac{1}{\text{Width of stair (ft/m)}} \right) + \left(2 \times \frac{1}{\text{Riser height (ft/m)}} \right) \right]$	Heating cable length for stairs (ft/m)
Note: Additional heating cable for connection kits and end terminations is calculated in Step 8.	
Calculate heating cable needed for wheel tracks	
Length (ft/m)	Wheel track to be protected (ft/m)
	Total heating cable length required (ft/m)
Example:	
Surfaces	
$\frac{4000 \text{ ft}^2}{\text{Total concrete slab area}} \times 12 \text{ in } / \frac{10 \text{ in}}{\text{Heating cable spacing}} =$	4800
Total concrete slab area Heating cable spacing	Heating cable length for surface
Calculate the heating cable for stairs and landing	
$\frac{10}{\text{No. of stairs}} \times \left[\left(\frac{3}{\text{No. of runs per stair}} \times \frac{5 \text{ ft}}{\text{Width of stair}} \right) + \left(2 \times \frac{0.5 \text{ ft}}{\text{Riser height}} \right) \right] + \left(2 \times \frac{1000 \text{ ft}}{1000 \text{ ft}} \right) = 0.000 \text{ ft}$	160 ft
No. of stairs $($ No. of runs per stair $($ Width of stair $)$ $($ 2 $($ Riser height $)$ $($	Heating cable length for stairs
Note: Additional heating cable for connection kits and end terminations is calculated in Step 8.	
	4960 ft
	Total heating cable length required

Step 🖬 Determine the electrical parameters	
See Table 7 and Table 8	
Determine number of circults	
-leating cable length required for surface (ft/m) / Maximum heating cable circuit length (ft/m)	Number of circuits
Determine total transformer load	
Calculate circuit breaker load (CBL)	
Circuit breaker rating (Amps) × 0.8 × Supply voltage) / 1000	Circuit breaker load (kW)
Calculate the total transformer load as follows:	
If the CBL is equal on all circuits, calculate the transformer load as:	
Circuit breaker load (kW) X Number of breakers	→ = Total transformer load (kW)
If the CBL is NOT equal on all circuits, calculate the transformer load as:	
CBL_1 + CBL_2 + CBL_3 + CBL_N	→ = Total transformer load (kW)
Example:	
Determine number of circults: Surfaces	
4800 ft / 325 ft	14.8 rounded to 15
Heating cable length required for surface / Maximum heating cable circuit length	Number of circuits
Determine number of circults: Stair	
160 ft / 325 ft	0.5 rounded to 1
Heating cable length required for surface / Maximum heating cable circuit length	Number of circuits
Determine transformer load	
50 A 277 V (1000	11.1 kW
50 A X 277 V Circuit breaker rating X 0.8 X Supply voltage) / 1000	Circuit breaker load (kW)
X 16	177.6 kW rounded to 178
11.1 kW x 16 Circuit breaker load (kW) x Number of breakers	Total transformer load (kW)

Step 🗉 Select the connection	kit and accessories		
See Table 9			lle sting a shire
Connection kits	Description	Quantity	Heating cable allowance
EMK-XP	Power connection and end seal k	t	
EMK-XS	Splice kit		
Accessories	Description	Quantity	
EMK-XJR	Jacket repair kit		
EMK-CT	Nylon cable ties		_
EMK-XT	Crimping tool		_
SMCS	Snow melt caution sign		_
EMK-XEJ	Expansion joint kit		_
EMK-XJB	Junction box		
			Total heating cable allowance for connection kits
+ Number circuits for concrete slab	Circuit(s) for stairs + Circuit(s) for expansio		
(+) x End seal conduit length Total number		=
Power connection conduit length (slab to junction box) (ft/m)	(slab to junction box) (ft/m)	of circuits	Total conduit length (ft/m)
Cable allowance per circuit connection (ft/m)	x Total number of circuits		Total heating cable allowance per power connection (ft/m)
	+ Total allowance per power connection kit (ft/m)		= Total additional heating cable (ft/m)
Total heating cable length (ft/m)	+ Total heating cable allowance (ft/m)		=
Example:			
15	+	16	16
Number circuits for concrete slab	Circuit(s) for stairs Circuit(s) for expansion	n joints Total no. of circuits	Total no. of power connection kits
(15 ft	15 ft 16		480 ft
Power connection conduit length (slab to junction box)	+ <u>End seal conduit length</u>) x <u>Total number</u> (slab to junction box)	of circuits	Total conduit length
3 ft	16		48 ft
Cable allowance per circuit connection	X Total number of circuits	>	Total heating cable allowance per power connection
480 ft	48 ft		528 ft
Total conduit length	Total allowance per power connection kit	>	Total additional heating cable

Step Select the control system and power distribution

Control Systems See Table 10.

Thermostats, controllers and accessories	Description	Quantity
ECW-GF	Electronic thermostat with 25-ft sensor	
ECW-GF-DP	Remote display panel for ECW-GF	
D PD Pro	Automatic snow and ice melting controller	
GF-Pro	Automatic snow and ice melting controller	
APS-3C	Automatic snow and ice melting controller	
APS-4C	Automatic snow and ice melting controller	
SC-40C	Satellite contactor	
CIT-1	Overhead snow sensor	
SIT-6E	Pavement-mounted sensor	
RCU-3	Remote control unit for APS-3C	
RCU-4	Remote control unit for APS-4C	
ACS-UIT2	ACS-30 user interface terminal	
ACS-PCM2-5	ACS-30 power control panel	
□ ProtoNode-RER	Multi-protocol gateway	
□ RTD3CS	Resistance temperature device for RAYCHEM ACS-30	
RTD10CS	Resistance temperature device for RAYCHEM ACS-30	
□ RTD-200	Resistance temperature device for RAYCHEM ACS-30	
□ RTD50CS	Resistance temperature device for RAYCHEM ACS-30	
Power Distribution See Table 11.		
Power distribution and control panels	Description	Quantity
SMPG1	Single-phase power distribution panel	

Step 10 Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

FREEZER FROST HEAVE PREVENTION – RAYSOL AND MI HEATING CABLE SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM RaySol self-regulating heating cable system or a RAYCHEM Mineral Insulated heating cable system for freezer frost heave prevention. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INT	RODUCTION	2
	How to Use this Guide	2
	Safety Guidelines	2
	Warranty	3
SYS	TEM OVERVIEW	3
	Typical System	4
	Self-Regulating Heating Cable Construction	
	MI Heating Cable Construction	
	Approvals	
FRE	EZER FROST HEAVE PREVENTION DESIGN	8
	Design Assumptions	8
	Design Step by Step RaySol and MI Heating Cables in Conduit	
	Step 1 Determine the freezer configuration	
	Step 2 Select the heating cable	. 11
	Step 3 Determine the heating cable conduit spacing and freezer load	.14
	Step 4 Determine the heating cable layout and length	
	Step 5 Determine the electrical parameters	
	Step 6 Select the connection kits and accessories	
	Step 7 Select the control system	
	Step 8 Select the power distribution	
	Step 9 Complete the Bill of Materials	
	Design Step by Step MI Heating Cables Directly Embedded	
	Step 1 Determine the freezer configuration	
	Step 2 Determine heat loss and freezer load	
	Step 3 Select the heating cable, layout and length	
	Step 4 Determine the heating cable spacing	
	Step 5 Determine the electrical parameters	
	Step 6 Select the accessories	
	Step 7 Select the control system	
	Step 8 Select the power distribution	
	Step 9 Complete the Bill of Materials	.48
RAY	SOL AND MI HEATING CABLE IN CONDUIT FREEZER FROST HEAVE PREVENTION DESIGN WORKSHEET	٨٥
	ABLES DIRECTLY EMBEDDED FREEZER	77
	FROST HEAVE PREVENTION DESIGN WORKSHEET	54

INTRODUCTION	
	nVent offers two different heating cable technologies for freezer frost heave prevention: RAYCHEM RaySol self-regulating heating cable system and RAYCHEM MI heating cable system. Both RaySol and MI heating cables can be installed in conduit. Only MI heating cables can be embedded directly in the subfloor (concrete, sand, or compacted fill).
	If your application conditions are different, or if you have any questions, contact your nVent representative or call (800) 545-6258.
How to Use this Guide	
	This design guide presents nVent recommendations for designing freezer frost heave prevention systems. It provides design and performance data, electrical sizing information, and heating cable layout suggestions. Following these recommendations will result in a reliable, energy-efficient system.
	Follow the design steps in the respective "Design" sections and use the appropriate "RaySol and MI Heating Cable in Conduit Freezer Frost Heave Prevention Design Worksheet" on page 49 and "MI Cables Directly Embedded Freezer Frost Heave Prevention Design Worksheet" on page 264 to document the project parameters that you will need for your project's Bill of Materials.
	OTHER REQUIRED DOCUMENTS
	This guide is not intended to provide comprehensive installation instructions. For complete freezer frost heave prevention system installation instructions, please refer to the following additional required documents:
	 RAYCHEM RaySol Floor Heating and Frost Heave Prevention Installation and Operation Manual (H58138)
	 RAYCHEM Mineral Insulated Heating Cable Floor Heating and Frost Heave Prevention Installation and Operation Manual (H58137)
	 Additional installation instructions are included with the connection kits, thermostats, controllers, and accessories
	If you do not have these documents, you can obtain them from the nVent web site at nVent.com.
	For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.
Safety Guidelines	
	As with any electrical equipment, the safety and reliability of any system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.
	This symbol identifies important instructions or information.
	\bigtriangleup This symbol identifies particularly important safety warnings that must be followed.
	MADNING: To minimize the denger of fire from quetained electrical areing
	WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch

circuit. Arcing may not be stopped by conventional circuit protection.

Warranty

nVent standard limited warranty applies to RAYCHEM and RAYCHEM Freezer Frost Heave Prevention Systems.

An extension of the limited warranty period to ten (10) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

SYSTEM OVERVIEW

Subfreezing temperatures inside cold rooms, freezers, and ice arenas cause heat to be lost from the soil under the floor, even when it is well insulated. As the soil freezes, capillary action draws water into the frozen areas where the water forms a concentrated ice mass. As the ice mass grows, it heaves the freezer floor and columns, causing damage.

nVent offers two different heating cable technologies for freezer frost heave prevention: RAYCHEM RaySol self-regulating heating cable and RAYCHEM MI heating cable system. Both RaySol and MI heating cables can be installed in conduit. Only MI heating cables can be embedded directly in the subfloor (sand, compacted fill or concrete). The electrical conduit carrying the heating cable or the directly embedded heating cable is installed in the subfloor under the freezer-floor insulation, as illustrated below. The subfloor layer may be a reinforced concrete slab, a concrete mud slab, a bed of compacted sand, or simply compacted fill.

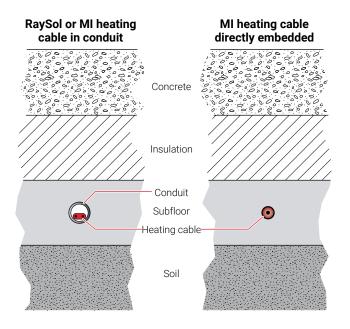


Fig. 1 Typical freezer frost heave installation

The RaySol self-regulating heating cable provides a cut-to-length solution. The backbone of the system is the self-regulating heating cable available for 120 and 208–277 V applications. As Fig. 4 on page 216 indicates, the cable's output is reduced automatically as the subfloor warms, so there is no possibility of failure due to overheating. Since there is no possibility of overheating, RaySol may be operated without thermostatic control. Elements of a RaySol system include the heating cable, termination, splice connections and accessories, controls, power distribution panels, and the tools necessary for a complete installation.

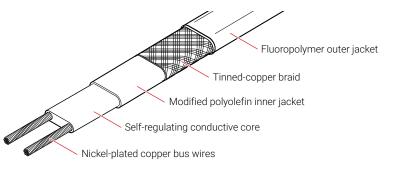
RAYCHEM MI heating cable can be used for single-phase and three-phase applications up to 600 V and the cable can be installed in conduit or directly embedded in sand (recommended), concrete, or compacted fill. For directly embedded applications, long cable runs can be accommodated allowing frost heave prevention systems to be designed for large freezers and ice arenas using only a few circuits. RAYCHEM MI heating cables are rugged factory-terminated cables (Fig. 6 and Fig. 7) that are engineered to suit your application, power and configuration requirements. Elements of an MI system include the heating cable, accessories, controls, power distribution panels, and the tools for a complete installation.

A typical system includes the following:

- RaySol self-regulating heating cable or RAYCHEM MI heating cable
- Connection kits (for RaySol only)
- Junction boxes
- · Temperature control and power distribution systems

Typical System

Fig. 2 Typical freezer frost heave system


The following table lists the heating cable, required connection kits, and accessories for a RaySol and MI heating cable systems.

TABEL 1 HEATING CABLES AND CONNECTION KITS

	Catalog Number	Description		
Heating apple	RaySol-1 RaySol-2	120 V 208–277 V		
Heating cable	LSZH jacketed copper sheath MI heating cable	≤600 V		
Connection kits	FTC-XC	Power connection and end seal		
for RaySol	RayClic-E	End seal		
heating cables	FTC-HST	Splice (as required – not for use inside conduit)		

Self-Regulating Heating Cable Construction

RAYCHEM RaySol self-regulating heating cables are comprised of two parallel nickel-coated bus wires in a cross-linked polymer core, a tinned copper braid, and a fluoropolymer outer jacket. These cables are cut to length simplifying the application design and installation.

Fig. 3 Typical RaySol heating cable construction

With self-regulating technology, the number of electrical paths between bus wires changes in response to temperature fluctuations. As the temperature surrounding the heater decreases, the conductive core contracts microscopically. This contraction decreases electrical resistance and creates numerous electrical paths between the bus wires. Current flows across these paths to warm the core.

As the temperature rises, the core expands microscopically. This expansion increases electrical resistance and the number of electrical paths decreases. The heating cable automatically reduces its output.

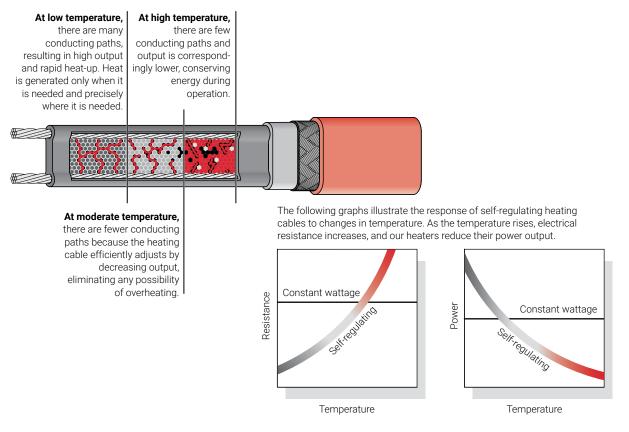
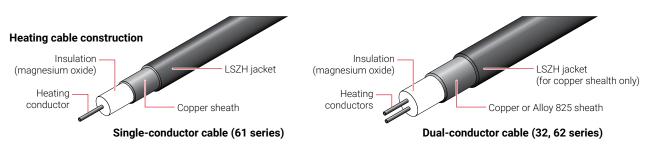
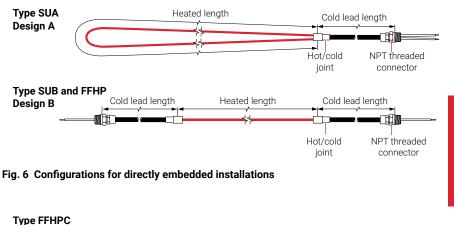



Fig. 4 Self-regulating heating cable technology

MI Heating Cable Construction


RAYCHEM MI heating cables used for frost heave prevention applications are comprised of one or two conductors surrounded by magnesium oxide insulation and a solid copper sheath with a Low Smoke Zero Halogen (LSZH) jacket or Alloy 825 stainless steel sheath for directly embedded or in conduit applications.

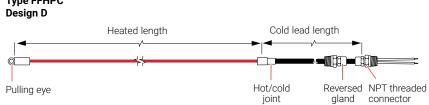


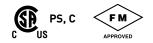
Fig. 5 Typical MI heating cable construction

These heating cables are supplied as complete factory-fabricated assemblies consisting of an MI heating cable that is joined to a section of MI non-heating cold lead and terminated with NPT connectors. Three configurations are available: Type SUA consisting of a looped cable joined to a single 7 ft (2.1 m) cold lead with one 1/2-in NPT connector; Type SUB/FFHP consisting of a single run of cable with a 15 ft (4.6 m) cold lead and a 1/2-in NPT connector on each end; and Type FFHPC consisting of a single run of cable joined to a single 7 ft (2.1 m) cold lead with one 1/2-in NPT connector.

Types SUA and SUB/FFHP heating cables (Fig. 6) are used for directly embedded applications, and Type FFHPC heating cables (Fig. 7) are used for installation in conduit. Type FFHPC heating cables are supplied with a bare copper sheath cold lead and a 3/4-in NPT reversed gland connector and a pulling eye. The reversed gland connector provides a seal for the end of the conduit (see Fig. 13 on page 231).

Fig. 7 Configuration for installation in conduit

nVent offers all the major components necessary for system installation. Details of these components and additional accessories can be found later in this section.


Approvals

Installation of RAYCHEM RaySol and RAYCHEM MI heating cable systems is governed by national and local electrical codes. nVent, the NEC, and the CEC all require the use of ground-fault protection of equipment to reduce the risk of fire caused by damage or improper installation.

RaySol system is UL Listed and CSA Certified for use in nonhazardous locations.

MI system is c-CSA-us Certified and FM Approved for use in nonhazardous locations. FM applies only to the bare copper and stainless steel cable for Freezer Frost Heave installation inside of conduits.

FREEZER FROST HEAVE PREVENTION DESIGN

This section details the steps necessary to design your application. The examples provided in each step are intended to incrementally illustrate the project parameter output for sample designs from start to finish. As you go through each step, use the appropriate "RaySol and MI Heating Cable in Conduit Freezer Frost Heave Prevention Design Worksheet" on page 259 and "MI Cables Directly Embedded Freezer Frost Heave Prevention Design Worksheet" on page 264 to document your project parameters, so that by that end of this section, you will have the information you need for your Bill of Materials.

This section contains two major parts:

- 1. Design Step by Step RaySol and MI Heating Cables in Conduit (see page 219)
- 2. Design Step by Step MI Heating Cable Directly Embedded (see page 240)

Design Assumptions

When using this guide to design a system you need the following information:

- · Size and layout of freezer or ice arena
- Freezer operating temperature
- Insulation R-value
- · Supply voltage and phase
- · Control recommendations (over-limit thermostat and monitoring)

The information and recommendations in this section are based on the following design assumptions:

- The information in this guide is based on the application of the RaySol and MI heating cables in the subfloor on grade only.
- Any size freezer or cold room operating below 32°F (0°C) may experience frost heaving.
- The heating cable is located in a sub-slab underneath the insulation. (see Fig. 1)
- The heating cable is in conduit embedded in concrete, sand, or soil (or directly embedded if using MI heating cables). If you are using a different medium, contact nVent for an analysis.

For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

Design Step by Step RaySol and MI Heating Cables in Conduit

This section guides you through the steps necessary to design your system using RaySol self-regulating or MI heating cables in conduit.

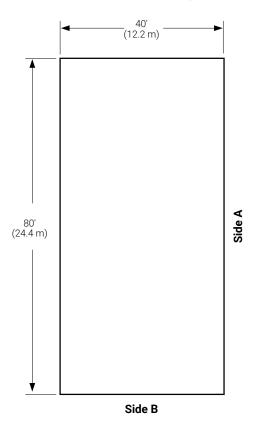
Your system design requires the following essential steps:

- 1 Determine the freezer configuration
- **2** Select the heating cable
 - A. RaySol heating cable in conduit
 - B. MI heating cable in conduit
- 3 Determine the heating cable conduit spacing and freezer load
- Determine the heating cable layout and length
 - A. RaySol heating cable in conduit
 - B. MI heating cable in conduit
- **5** Determine the electrical parameters
 - A. RaySol heating cable in conduit
 - B. MI heating cable in conduit
- 6 Select the connection kits and accessories
- **7** Select the control system
- 8 Select the power distribution
- 9 Complete the Bill of Materials

The "RaySol and MI Heating Cable in Conduit Freezer Frost Heave Prevention Design Worksheet" on page 259 is included to help you document the project parameters that you will need for your project's Bill of Materials.

Freezer Frost Heave Prevention System Design Steps (in Conduit) 1. Determine the freezer configuration 2. Select the heating cable 3. Determine heating cable conduit spacing and freezer load 4. Determine the heating cable layout and length 5. Determine the electrical parameters 6. Select the connection kits and accessories 7. Select the control system 8. Select the power distribution 9. Complete the Bill of Materials

Step Determine the freezer configuration


GATHERING INFORMATION

The following information is required to complete the freezer frost heave prevention system design.

- · Size and layout of freezer or ice arena
- Freezer operating temperature
- Insulation R-value
- · Supply voltage (single-phase)
- Control requirements

PREPARE SCALE DRAWING

Draw to scale the floor area to be heated. Carefully note the limits of the area to be heated. Show all concrete joints on the drawing and note the location and size of obstacles, such as floor drains, pipe penetrations, conduit runs (if required), columns, fixtures, and voltage supply location.

DETERMINE THE FREEZER OPERATING TEMPERATURE

Determine the temperature at which your freezer operates. If it operates at more than one temperature, or if the operating temperature may be changed in the future, base the spacing selection on the lowest anticipated operating temperature.

RECORD INSULATION R-VALUE

The insulation R-value is the thermal resistance of the floor's insulation. Normally the R-value will be printed on the insulation material. If that is not the case, you can calculate it by dividing the insulation thickness in inches by the insulation thermal conductivity.

Example: RaySol and MI heating cables in conduit

Area

Freezer operating temperature Insulation R-value Supply voltage 80 ft x 40 ft = 3200 ft² (24.4 m x 12.2 m = 297 m²) -20°F (-29°C) R-40 (40 ft^{2.}°F·hr/Btu) 208 V, single-phase

Step 2 Select the heating cable

The heating cable you select will depend on your system:

- A. RaySol heating cable in conduit
- B. MI heating cable in conduit

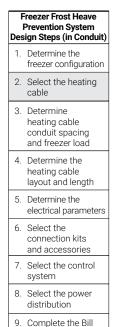
STEP 2A: FOR RAYSOL HEATING CABLE IN CONDUIT

Select the heating cable based on the operating voltage determined in Step 1. For 120 volts, select RaySol-1; for 208/240/277 V, select RaySol-2.

TABLE 2 RAYSOL HEATING CABLE

Supply voltage	Catalog number
120 V	RaySol-1
208-277 V	RaySol-2

Example: RaySol heating cables in conduit


Supply voltage	208 V (from Step 1)
Catalog number	RaySol-2

STEP 2B: FOR MI HEATING CABLE IN CONDUIT

Select the heating cable from Table 3 based on the operating voltage from Step 1 and the freezer length. The freezer length must be equal to or within the minimum and maximum "Freezer length" shown in the shaded columns. For the example in Fig. 8, under 208 V, select the heating cable that corresponds to the Minimum (80 ft/24.4 m) and Maximum (84 ft/25.6 m) "Freezer length" in the shaded columns.

If your freezer is longer than 104 ft (32 m), or the supply voltage is different than those listed, or the system will be powered from a three-phase supply, please contact your nVent representative or call (800) 545- 6258 for a custom design.

If it is not possible to install the conduit runs parallel to the freezer length (Side A), then select the heating cable based on the freezer width (Side B).

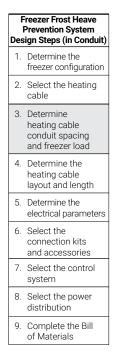
of Materials

TABLE 3 SELECTION TABLE FOR MI HEATING CABLES IN CONDUIT

							Power	Heating
			r length		Heated length		output	cable
Catalog number	Min (ft)	Max (ft)	Min (m)	Max (m)	(ft)	(m)	(W)	current (A) ¹
120 V								
FFHPC1	15	19	4.6	5.8	15	4.6	105	0.9
FFHPC2	20	24	6.1	7.3	20	6.1	120	1.0
FFHPC3	25	29	7.6	8.8	25	7.6	145	1.2
FFHPC4	30	34	9.1	10.4	30	9.1	175	1.5
FFHPC5	35	39	10.7	11.9	35	10.7	240	2.0
FFHPC6	40	44	12.2	13.4	40	12.2	315	2.6
FFHPC7	45	49	13.7	14.9	45	13.7	280	2.3
FFHPC8	50	54	15.2	16.5	50	15.2	360	3.0
FFHPC9	55	59	16.8	18.0	55	16.8	330	2.8
FFHPC10	60	64	18.3	19.5	60	18.3	400	3.3
FFHPC11	65	69	19.8	21.0	65	19.8	370	3.1
FFHPC12	70	74	21.3	22.6	70	21.3	515	4.3
FFHPC13	75	79	22.9	24.1	75	22.9	480	4.0
FFHPC14	80	84	24.4	25.6	80	24.4	450	3.8
FFHPC15	85	89	25.9	27.1	85	25.9	565	4.7
FFHPC16	90	94	27.4	28.7	90	27.4	535	4.5
FFHPC17	95	99	29.0	30.2	95	29.0	750	6.3
FFHPC18	100	104	30.5	31.7	100	30.5	720	6.0
208 V								
FFHPC19	25	29	7.6	8.8	25	7.6	155	0.7
FFHPC20	30	34	9.1	10.4	30	9.1	190	0.9
FFHPC21	35	39	10.7	11.9	35	10.7	205	1.0
FFHPC22	40	44	12.2	13.4	40	12.2	270	1.3
FFHPC23	45	49	13.7	14.9	45	13.7	350	1.7
FFHPC24	50	54	15.2	16.5	50	15.2	315	1.5
FFHPC25	55	59	16.8	18.0	55	16.8	390	1.9
FFHPC26	60	64	18.3	19.5	60	18.3	425	2.0
FFHPC27	65	69	19.8	21.0	65	19.8	390	1.9
FFHPC28	70	74	21.3	22.6	70	21.3	540	2.6
FFHPC29	75	79	22.9	24.1	75	22.9	505	2.4
FFHPC30	80	84	24.4	25.6	80	24.4	475	2.3
FFHPC31	85	89	25.9	27.1	85	25.9	635	3.1
FFHPC32	90	94	27.4	28.7	90	27.4	600	2.9
FFHPC33	95	99	29.0	30.2	95	29.0	570	2.7
FFHPC34	100	104	30.5	31.7	100	30.5	720	3.5

TABLE 3 SELECTION TABLE FOR MI HEATING CABLES IN CON	DUIT
--	------

		Freezer length			Heated	l length	Power output	Heating cable
Catalog number	Min (ft)	Max (ft)	Min (m)	Max (m)	(ft)	(m)	(W)	current (A) ¹
277 V								
FFHPC35	30	34	9.1	10.4	30	9.1	230	0.8
FFHPC36	35	39	10.7	11.9	35	10.7	240	0.9
FFHPC37	40	44	12.2	13.4	40	12.2	255	0.9
FFHPC38	45	49	13.7	14.9	45	13.7	285	1.0
FFHPC39	50	54	15.2	16.5	50	15.2	380	1.4
FFHPC40	55	59	16.8	18.0	55	16.8	350	1.3
FFHPC41	60	64	18.3	19.5	60	18.3	465	1.7
FFHPC42	65	69	19.8	21.0	65	19.8	430	1.6
FFHPC43	70	74	21.3	22.6	70	21.3	400	1.4
FFHPC44	75	79	22.9	24.1	75	22.9	500	1.8
FFHPC45	80	84	24.4	25.6	80	24.4	480	1.7
FFHPC46	85	89	25.9	27.1	85	25.9	530	1.9
FFHPC47	90	94	27.4	28.7	90	27.4	500	1.8
FFHPC48	95	99	29.0	30.2	95	29.0	700	2.5
FFHPC49	100	104	30.5	31.7	100	30.5	670	2.4


¹ Single-phase current shown

Tolerance on cable length is -0% to +1%. All heating cables supplied with 3/4-in NPT reversed gland and pulling eye. Type FFHPC cables supplied with 7 ft (2.1 m) long cold lead.

Example: MI heating cables in conduit

Supply voltage					
Freezer (Side A) length					
Catalog number					
Power output					

208 V 80 ft (24.4 m) (from Step 1) FFHPC30 475 W

Step Determine the heating cable conduit spacing and freezer load

FOR RAYSOL AND MI CABLE SYSTEMS

In this step you will determine the conduit spacing, and freezer loads for the RaySol or MI heating cable systems. Use the freezer operating temperature and the floor insulation R-value to select the correct spacing shown in Table 4. If your calculated R-value or freezer operating temperature does not match the values in the table, use the values that give the closer spacing.

Within each cell in Table 4, there are two numbers: conduit spacing and freezer load. Freezer load is the additional cooling load imposed on the cooling system by the freezer frost heave prevention heating cable. It is the heat transferred through the insulation into the freezer, expressed in W/ft^2 (W/m^2) of floor area.

TABLE 4 RAYSOL AND MI CONDUIT SPACING AND FREEZER LOAD

Freezer or	perating					Fl	oor insula (ft²·°F·	tion R-va hr/Btu)	alue		
temperatu				F	R-10	F	R-20	R	1-30	R	-40
30°F	(-1°C)	Conduit spacing	in (cm)	96	(244)	96	(244)	96	(244)	96	(244)
		Freezer load	W/ft² (W/m²)	0.7	(8)	0.4	(4)	0.3	(3)	0.2	(2)
20°F	(-7°C)	Conduit spacing	in (cm)	81	(206)	96	(244)	96	(244)	96	(244)
		Freezer load	W/ft² (W/m²)	0.8	(9)	0.5	(5)	0.3	(3)	0.3	(3)
10°F	(-12°C)	Conduit spacing	in (cm)	63	(160)	96	(244)	96	(244)	96	(244)
		Freezer load	W/ft² (W/m²)	1.0	(11)	0.6	(6)	0.4	(4)	0.3	(3)
0°F	(-18°C)	Conduit spacing	in (cm)	51	(130)	84	(213)	96	(244)	96	(244)
		Freezer load	W/ft² (W/m²)	1.2	(13)	0.8	(9)	0.5	(5)	0.4	(4)
-10°F	(-23°C)	Conduit spacing	in (cm)	42	(107)	72	(183)	96	(244)	96	(244)
		Freezer load	W/ft² (W/m²)	1.5	(16)	0.8	(9)	0.6	(6)	0.5	(5)
-20°F	(-29°C)	Conduit spacing	in (cm)	36	(91)	63	(160)	87	(221)	96	(244)
		Freezer load	W/ft² (W/m²)	1.8	(19)	1.0	(11)	0.6	(6)	0.5	(5)
-30°F	(-34°C)	Conduit spacing	in (cm)	33	(84)	57	(145)	78	(198)	93	(236)
		Freezer load	W/ft² (W/m²)	2.0	(22)	1.1	(12)	0.8	(9)	0.6	(6)
-40°F	(-40°C)	Conduit spacing	in (cm)	30	(76)	51	(130)	69	(175)	84	(213)
		Freezer load	W/ft² (W/m²)	2.3	(25)	1.2	(13)	0.8	(9)	0.7	(8)

Example: RaySol and MI heating cables in conduit

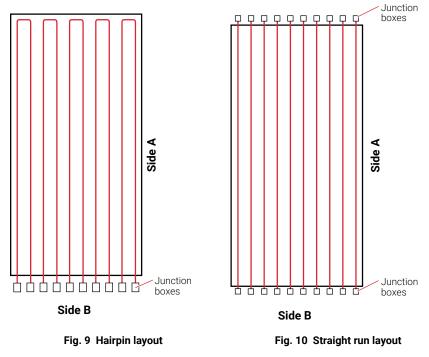
Freezer operating temperature Insulation R-value Conduit spacing Freezer load -20°F (-29°C) (from Step 1) R-40 (40 ft^{2.}°F·hr/Btu) (from Step 1) 96 in (244 cm) 0.5 W/ft² (5 W/m²)

Ī	reezer Frost Heave Prevention System ign Steps (in Conduit)
1.	Determine the freezer configuration
2.	Select the heating cable
3.	Determine heating cable conduit spacing and freezer load
4.	Determine the heating cable layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Determine the heating cable layout and length

STEP 4A FOR RAYSOL HEATING CABLE IN CONDUIT

Estimate number of conduit runs


To calculate the number of conduit runs and heating cable length from your scaled drawing, refer to Fig. 9 and Fig. 10.

Define Side "A" as the side that is parallel to the conduit runs. Side "A" cannot be greater than the maximum circuit length for RaySol (Table 5).

Define Side "B" as the side that is perpendicular to the conduit runs. Refer to Fig. 9 and Fig. 10 for examples of Side A and Side B.

Two basic types of heating cable layouts are used:

- 1. The hairpin layout (Fig. 9) is used both in smaller freezers where it results in material and labor savings over the straight run layout (Fig. 10), and in other freezers where only one wall of the freezer is accessible for mounting junction boxes.
- 2. The straight run layout (Fig. 10) is used when the freezer dimension exceeds one-half the maximum heating cable circuit length (insufficient heating cable allowed for a run down and back).

Freezer Frost Heave Prevention

Calculate the number of estimated conduit runs as follows:

Estimated number of conduit runs = Side B (ft) x 12

Conduit spacing (in) Side B (m) x 100 Conduit spacing (cm) Round the estimated number of conduit runs to the next larger whole number. For example, if the result is 7.4, then 8 conduit runs are required. It may be necessary to recalculate the conduit spacing following this step.

Example: RaySol heating cables in conduit

Side B length	40 ft (12.2 m) (from Step 1)
Conduit spacing	96 in (244 cm) (from Step 3)
Number of conduit runs	
Side B x 12 / spacing (in)	40 ft x 12 / 96 in = 5
Side B x 100 / spacing (cm)	12.2 m x 100 / 244 cm = 5

Estimate the heating cable length required for conduit runs

Multiply the conduit length (Side A) by the number of conduit runs to determine the length of heating cable required for the freezer area.

Heating cable length = Conduit length (Side A) x number of conduit runs

Example: RaySol heating cables in cond	luit (continued)
Heating cable length required	80 ft (24.4 m) x 5 = 400 ft (122 m)

Determine the maximum circuit length for the heating cable length and layout

For the appropriate supply voltage, use Table 5 to select the maximum circuit length which is closest to, but greater than the length calculated. Select the smallest appropriate circuit breaker size.

TABLE 5 RAYSOL MAXIMUM CIRCUIT LENGTHS IN FEET (METERS)

Supply voltage	12	0 V	20	8 V	24	0 V	27	77 V
Circuit breaker size (A)	ft	m	ft	m	ft	m	ft	m
15	180	54.9	305	93.0	335	102.1	375	114.3
20	240	73.2	410	125.0	450	137.2	500	152.4
30	240	73.2	410	125.0	450	137.2	500	152.4
40	240	73.2	410	125.0	450	137.2	500	152.4

If the heating cable length required is greater than the maximum circuit length, multiple circuits must be used.

When Side A x 2 is less than or equal to the maximum circuit length, then the conduit run can be looped into the hairpin layout (Fig. 9). In a hairpin configuration, when you have an odd number of conduit runs, one run will be a straight run as shown in Fig. 11.

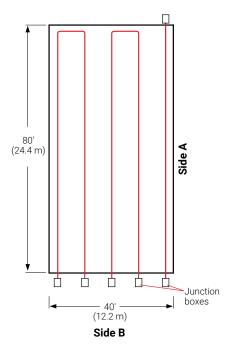


Fig. 11 Layout for example (two hairpins and one straight run)

Example: RaySol heating cables in conduit (continued)

Heating cable length required	400 ft (122 m)
Supply voltage	208 V (from Step 1)
Maximum circuit length	410 ft (125 m) (from Table 5)
Number of circuits	1
Power supply	One 20 A circuit breaker
	Run in two hairpin loops and one straight run
	(see Fig. 11)

Ground-Fault Protection

A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers.

Determine additional heating cable allowance

Additional heating cable is required to make power connections and to route the circuits to junction boxes. This extra heating cable shall not be considered when determining the maximum heating cable length for circuit breaker sizing. In order to estimate the total heating cable length, you will need to take the heating cable length you already calculated, and then add heating cable allowances, as follows:

Estimated total heating cable length = Required heating cable + End allowances + Connection kit allowances

TABLE 6 RAYSOL ADDITIONAL HEATING CABLE ALLOWANCE

Heating cable allowance	Description	Hairpin layout	Straight run layout
End allowances	From end of conduit to junction box	8 ft per hairpin conduit	8 ft per straight run conduit
Connection kit allowances	Required to assemble the connection kit	4 ft per kit	4 ft per kit

The end allowance is the length of heating cable installed in protective conduit between the heated floor and the power connection junction box. The connection kit allowance (usually 2 ft per end) is the length of heating cable inside the power connection junction box.

Example: RaySol heating cables in conduit (continued)

Heating cable length required	400 ft (122 m)
End allowance	2 hairpin runs = 16 ft (4.9 m) 1 straight run = 8 ft (2.4 m)
Connection kit allowance	2 hairpin runs (2 FTC-XC kits) = 8 ft (2.4 m) 1 straight run (1 FTC-XC kit) = 4 ft (1.2 m)
Total heating cable allowance	[16 ft (4.9 m) + 8 ft (2.4 m)] + [8 ft (2.4 m) + 4 ft (1.2 m)] = 36 ft (11 m)
Total heating cable length required	400 ft (122 m) + 36 ft (11 m) = 436 ft (133 m) of RaySol-2

Locate the junction boxes for a RaySol heating cable system

The heating cable connects to the branch circuit wiring in a junction box using a RAYCHEM FTC-XC power connection and end seal kit. The heating cable is routed from the subfloor to a junction box located above grade through protective conduit. In most freezer frost heave prevention applications, separate junction boxes are used for the power connection and end seal.

Lay out heating cable runs, circuits, and junction boxes

After determining the approximate total length of heating cable, the number of circuits, and the junction box location, do a trial layout. In making the trial layout, follow these recommendations:

- Start and end each circuit in a junction box.
- Do not design more than one run of heating cable per conduit.
- Arrange the conduit so it uniformly covers the area to be heated.
- Maintain the design conduit spacing within 4 in (10 cm).
- Do not extend the heating cable beyond the room or area in which it originates.
- · Do not cross expansion or other subfloor joints.
- Do not route the conduit closer than 4 in (10 cm) to the edge of the subfloor, drains, anchors, or other material in the concrete.
- Do not exceed the maximum circuit length allowed on a branch circuit breaker as given in Table 5.
- The maximum length of heating cable that can be pulled through conduit is 500 feet (150 m). The maximum total degree of conduit turn is 360 degrees.
- When the combined lengths of two or more circuit runs are less than the maximum circuit length allowed, these runs can be combined in parallel on one circuit breaker.

Record circuit information

Reconfigure the trial circuit layout until the design meets all of the previous recommendations. Assign each circuit to a circuit breaker in a specific panel board and record each circuit length.

STEP 4B FOR MI HEATING CABLE IN CONDUIT

Estimate number of conduit runs

MI cables in conduit can only be installed using the straight run layout shown in Fig. 12.

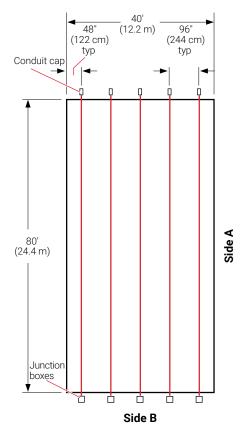


Fig. 12 Layout for straight run example

To calculate the number of conduit runs from your scaled drawing, refer to Fig. 12, and calculate as follows:

Estimated number of conduit runs = Side B (ft) x 12 Conduit spacing (in) Side B (m) x 100 Conduit spacing (cm)

Round the estimated number of conduit runs to the next larger whole number. For example, if the result is 7.4, then 8 conduit runs are required. It may be necessary to recalculate the conduit spacing following this step.

Note: If the heating cable was selected using the freezer width (Side B) in Step 2, use Side A in the above formula.

Example: MI heating cables in conduit

Side B length Conduit spacing Number of conduit runs Side B x 12 / spacing (in) Side B x 100 / spacing (cm)

40 ft (12.2 m) (from Step 1) 96 in (244 cm) (from Step 3)

40 ft x 12 / 96 in = 5 12.2 m x 100 / 244 cm = 5

Determine the number of MI heating cables

Number of heating cables required = Number of conduit runs

Example: MI heating cables in conduit (continued)

Heating cable	FFHPC30 (from Step 2)
Number of conduit runs	5
Number of heating cables required	5

Locate the junction boxes for an MI heating cable system

RAYCHEM MI heating cables are factory terminated with 7 ft (2.1 m) long non-heating cold leads, making it possible to connect two or three heating cables to a single junction box. A RAYCHEM D1297TERM4 may be used where two heating cables are connected in parallel. A junction box is only required for the power connection end.

Lay out the MI heating cable runs, circuits, and junction boxes

After determining the number of heating cables required, the number of circuits, and the junction box locations, do a trial layout. In making the trial layout, follow these recommendations:

- The conduits must be laid out in straight runs as shown in Fig. 12.
- Where cable lengths exceed 50 ft (15.2 m), the conduit must be accessible from both ends to allow long runs of cable to be pulled into the conduit.
- If it is necessary to stub-up the ends of the conduit, use a minimum 12 in (30 cm) radius as shown in Fig. 13.
- Arrange the conduits so that they uniformly cover the area to be heated.
- Maintain the design conduit spacing within 4 in (10 cm).
- Do not cross expansion or other subfloor joints.
- Do not route the conduit closer than 4 in (10 cm) to the edge of the subfloor, drains, anchors, or other material in the concrete.

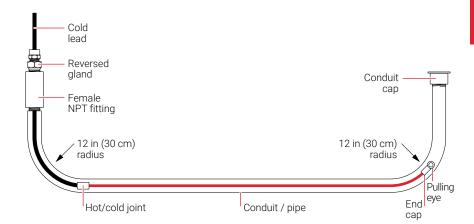


Fig. 13 Installation where conduit ends stub-up

Ī	reezer Frost Heave Prevention System ign Steps (in Conduit)
1.	Determine the freezer configuration
2.	Select the heating cable
3.	Determine heating cable conduit spacing and freezer load
4.	Determine the heating cable layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Determine the electrical parameters

5A FOR RAYSOL HEATING CABLE IN CONDUIT

Determine number of circuits

For RaySol, the circuit breaker sizing was determined in Step 4 using Table 5. Record the number and ratings of the circuit breakers to be used on the worksheet.

A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers.

A warning: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Determine transformer load

The total transformer load is the sum of the loads on all the circuit breakers in the system.

Calculate the Circuit Breaker Load (CBL) as:

CBL (kW) =	Circuit breaker rating (A) x 0.8 x Supply voltage
CDL(KVV) = -	1000

Calculate the Total Transformer Load as follows:

Total Transformer Load (kW) = $CBL_1 + CBL_2 + CBL_3... + CBL_N$

Example: RaySol heating cables in conduit

Supply voltage	208 V (from Step 1)
Circuit breaker load	(20 A x 0.8 x 208) / 1000 = 3.3 kW
Total transformer load	3.3 kW

5B FOR MI HEATING CABLE IN CONDUIT

For MI heating cable, the power output and current draw is shown in Table 3. Heating cables may be individually connected to circuit breakers, but to reduce the number of circuits, cables may be connected in parallel. When connecting heating cables in parallel, total the individual heating cable currents to 80% of the circuit breaker rating.

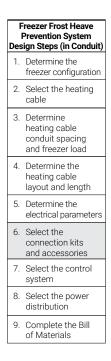
Determine number of circuits

Refer to Table 3 to determine the Amps for the selected heating cable. Next, calculate the total Amps to determine the circuit breaker requirements, as follows:

Total Amps = Amps per cable x Number of heating cables required

From the Total Amps, determine the most appropriate circuit breaker size and number of circuit breakers.

A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers.


WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

Determine transformer load

The total transformer load is the sum of the loads in the system. Calculate the Total Transformer Load as follows:

Transformer load (kW) = —	$\text{Cable}_{1}\left(\text{W}\right) + \text{Cable}_{2}\left(\text{W}\right) + \text{Cable}_{3}\left(\text{W}\right) + \text{Cable}_{N}\left(\text{W}\right)$	
	1000	
Example: MI heating cables	s in conduit	
Amps/cable	2.3 A (from Table 3)	
Total Amps	2.3 A x 5 = 11.5 A (5 cables wired in parallel on one circuit)	
Circuit breaker size	15 A circuit breaker, 80% loading 12 A	
Number of circuit breakers	1	
Cable power output	475 W (from Step 2)	
Number of cables	5 (from Step 4)	
Total Transformer load	(475 W x 5) / 1000 = 2.4 kW	
Depard the number and ratio	age of the aircuit breekers to be used and total	

Record the number and ratings of the circuit breakers to be used and total transformer load on the worksheet.

Step Select the connection kits and accessories

For RaySol systems, determine the number of junction boxes, power connections, end seals and splice kits required.

• Hairpin and straight layouts have one junction box per conduit end (see Fig. 9 and Fig. 10).

For MI systems, determine the number of junction boxes required.

• Straight run layout has one junction box per conduit run (see Fig. 12 for MI cable).

SELECT JUNCTION BOX

For RaySol and MI cable, use a UL Listed and/or CSA Certified junction box that is suitable for the location. Use a box with minimum internal volume of 16 cubic inches if the box is metallic and 19 cubic inches if the box is not metallic. Metal junction boxes, such as the RAYCHEM D1297TERM4, are recommended for MI cable.

TABLE 7 CONNECTION KITS AND ACCESSORIES

	Catalog number	Description	Standard packaging	Usage
RaySol Connection	lits			
	FTC-XC	Power connection and end seal.	1	1 per conduit run
		(Junction box not included)		
A CONTRACT OF THE OWNER	FTC-HST	Low-profile splice/tee	2	As required (for use inside intermediate pull box or cable tray)
	RayClic-E	Extra end seal	1	Replacement end seal
Accessories				
	D1297TERM4	A cast aluminum junction box (NEMA 3) for installation in nonhazardous and CID2 locations Three 1/2-in NPT entries on bottom, provided w plugs. Includes 4-pole terminal block (CSA - 600 V, 65 A, 18 - 6 AWG; UL - 300 V, 65 A, 18 - 6 AWG External mounting feet. CSA approved for Class Div. 2, Groups A, B, C, and D. (for MI only)	ith)).	For MI systems only
9		Enclosure dimensions: 6 in x 6 in x 4 in (150 mm x 150 mm x 100 mm).		
		Example: RaySol heating cables in conduit		
		Power connection and end seal kit	FTC-XC	
		Quantity	3	
		Junction box	Contractor suppli	ed
		Quantity	б	

Example: MI heating cables in conduit

Junction box Quantity

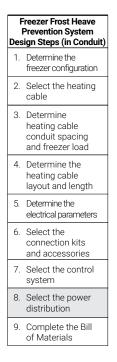
D1297TERM 5

Ī	Freezer Frost Heave Prevention System sign Steps (in Conduit)
1.	Determine the freezer configuration
2.	Select the heating cable
3.	Determine heating cable conduit spacing and freezer load
4.	Determine the heating cable layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Select the control system

The following control systems are suitable for both RaySol and MI heating cable frost heave protection systems. For MI cable, a temperature controller must be used to maintain the subfloor temperature at 40°F (5°C). For RaySol or MI heating cable installations where temperature control and temperature monitoring is desired, a nVent RAYCHEM C910-485 or RAYCHEM ACS-30 controller is recommended.

TABLE 8 TEMPERATURE CONTROL OPTIONS


Features	RAYCHEM ECW-GF	RAYCHEM C910-485 ²	RAYCHEM ACS-30
Number of heating cable circuits	Single	Single	Multiple
Sensor	Thermistor	RTD ¹	See data sheet
Sensor length	25 ft	Varies	11
Set point range	32°F to 200°F (0°C to 93°C)	−0°F to 200°F (−18°C to 93°C)	п
Enclosure	NEMA 4X	NEMA 4X	11
Deadband	2°F to 10°F (2°C to 6°C)	1°F to 10°F (1°C to 6°C)	п
Enclosure limits	−40°F to 140°F (−40°C to 60°C)	−40°F to 140°F (−40°C to 60°C)	II
Switch rating	30 A	30 A	n
Switch type	DPST	DPST	11
Electrical rating	100-277 V	100-277 V	n
Approvals	c-UL-us	c-CSA-us	11
Ground-fault protection	30 mA fixed	20 mA to 100 mA (adjustable)	п
Alarm outputs			
AC relay	2 A at 277 Vac	100–277 V, 0.75 A max.	п
Dry contact relay	2 A at 48 Vdc	48 Vac/dc, 500 mA max.	II

¹ Ordered separately

² The C910-485 is available to provide RS-485 communication capability. Connect to the BMS using RAYCHEM ProtoNode multi-protocol gateways

TABLE 9CONTROL SYSTEMS

	Catalog number Description		
Electronic thermost	tats and accessories		
	ECW-GF	Electronic ambient sensing controller with The controller can be programmed to main (93°C) at voltages from 100 to 277 V and c The ECW-GF is complete with a 25-ft (7.6-r in a Type 4X rated enclosure. The controller contact relay. An optional ground-fault display panel (EC	ntain temperatures up to 200°F can switch current up to 30 Amperes. m) temperature sensor and is housed er features an AC/DC dry alarm W-GF-DP) can be added to provide
		ground-fault or alarm indication in applicat in inaccessible locations.	tions where the controller is mounted
	ECW-GF-DP	An optional remote display panel (ECW-GF fault or alarm indication in applications wh inaccessible locations.	
	MI-GROUND-KIT	Grounding kit for nonmetallic enclosures (for MI only)
Electronic controlle	rs and sensors		
	C910-485	The RAYCHEM C910-485 is a compact, ful single-point commercial heating cable cor and monitoring of electrical heating cable applications, with built-in ground-fault prot monitor and alarm for high and low temper fault level, and voltage. Communications r control and configuration.	troller. The C910-485 provides control circuits for commercial heating ection. The C910-485 can be set to rature, high and low current, ground-
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Comme electronic control and monitoring system a commercial applications such as pipe free surface snow melting, hot water temperat RAYCHEM ACS-30 system can control up ACS-PCM2-5 panels, with a single ACS-UIT PCM2-5 panel can directly control up to 5 electro-mechanical relays rated at 30 A up	for heat-tracing used in various reprotection, roof and gutter de-icing, ure maintenance and floor heating. The to 260 circuits with multiple networked T2 user interface terminal. The ACS- individual heat-tracing circuits using
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, h gateway for customers needing protocol to Management Systems (BMS) and the RAY controllers. The ProtoNode-RER is for BACnet® or Met	ranslation between Building CHEM ACS-30 or C910-485
	RTD-200	Stainless steel jacketed three-wire RTD (Re	
A COST	RTD10CS RTD50CS	used with RAYCHEM C910-485 and ACS-3 RTD-200: 3-in (76 mm) temperature senso 6-ft (1.8 m) lead wire and 1/2-in NPT bushi	r with a
		RTD10CS: temperature sensor with a 10-ft 18-in (457 mm) lead wire and 1/2-inch NPT	(3 m) flexible armor,
		RTD50CS: temperature sensor with a 50-ft 18-in (457 mm) lead wire and 1/2-in NPT b	(3 m) flexible armor,
		Example: RaySol and MI heating cables in	conduit
		Electronic thermostat	RAYCHEM C910-485
		Quantity	1

Step Select the power distribution

FOR RAYSOL AND MI HEATING CABLE IN CONDUIT

Power to the heating cables can be provided in several ways:

- Directly to the power connection kits (RaySol only)
- Directly through the temperature controller
- Through external contactors or through HTPG power distribution panels

Single circuit control

Heating cable circuits that do not exceed the current rating of the selected controller can be switched directly (Fig. 14). When the total electrical load exceeds the rating of the controller, an external contactor is required.

RaySol systems without temperature control can be connected directly to the power connection kits from the ground-fault circuit breakers in subpanels.

Group control

If the controller will activate multiple circuits (group control) then an external contactor must be used (Fig. 14).

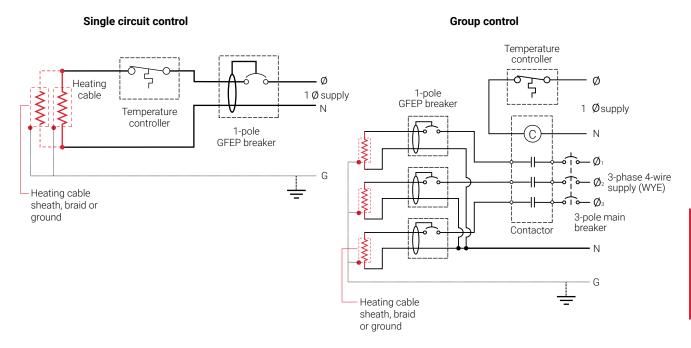


Fig. 14 Single circuit and group control

Large systems with many circuits should use an HTPG power distribution panel. The HTPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for freeze protection and broad temperaturemaintenance heat-tracing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with a temperature control system.

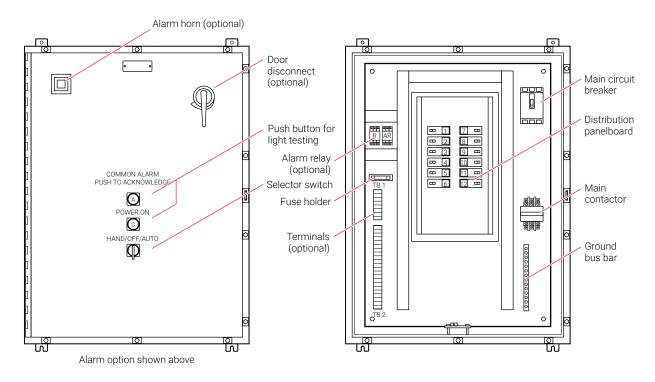
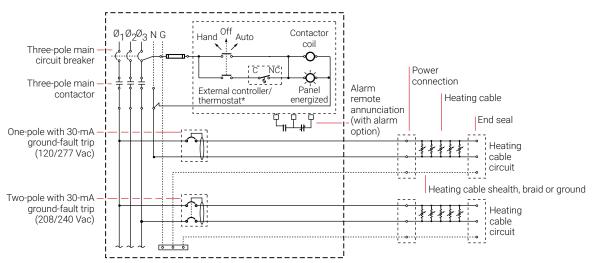



Fig. 15 HTPG power distribution panel

Three-phase, 4 wire supply (Wye)

Fig. 16 HTPG power schematic

TABLE 10 POWER DISTRIBUTION

	Catalog number	Description
Power Distribution	and Control Panels	
	HTPG	Heat-tracing power distribution panel with ground-fault and monitoring for group control.
Freezer Frost Heave Prevention System	Step 🛛 Complete t	he Bill of Materials
Design Steps (in Conduit) 1. Determine the freezer configuration	-	If you used the Design Worksheet to document all your design parameters, you should have all the details necessary complete your Bill of Materials.
2. Select the heating cable	-	
3. Determine heating cable conduit spacing and freezer load		
4. Determine the heating cable layout and length		
5. Determine the electrical parameters		
6. Select the connection kits and accessories		
 Select the control system 		
8. Select the power distribution		
9. Complete the Bill of Materials]	

Design Step by Step MI Heating Cables Directly Embedded

Embedding cables directly in sand (recommended), concrete, or compacted fill subfloors has the advantage of simpler installation and reduced costs. The number of electrical circuits can be minimized considerably compared to a similar installation using conduit. If embedded in a concrete subfloor below the insulation, the cable must not cross any joints in the subfloor.

Follow these steps to design your system:

- 1 Determine the freezer configuration
- 2 Determine heat loss and freezer load
- 3 Select the heating cable, layout and length
- 4 Determine the heating cable spacing
- 5 Determine the electrical parameters
- 6 Select the accessories
- 7 Select the control system
- 8 Select the power distribution
- 9 Complete the Bill of Materials

The "MI Cables Directly Embedded Freezer Frost Heave Prevention Design Worksheet" on page 264 is included to help you document the project parameters that you will need for your project's Bill of Materials.

-	Freezer Frost Heave Prevention System sign Steps (Embedded)
1.	Determine the freezer configuration
2.	Determine heat loss and freezer load
3.	Select the heating cable, layout and length
4.	Determine the heating cable spacing
5.	Determine the electrical parameters
6.	Select the accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Determine the freezer configuration

GATHERING INFORMATION

The following information is required to complete the freezer frost heave prevention system design.

- · Size and layout of freezer or ice arena
- Freezer operating temperature
- Insulation R-value
- · Supply voltage and phase
- Control requirements

PREPARE SCALE DRAWING

Draw to scale the floor area to be heated. Carefully note the limits of the area to be heated. Show all concrete joints on the drawing and note the location and size of obstacles, such as floor drains, pipe penetrations, columns, fixtures, and voltage supply location.

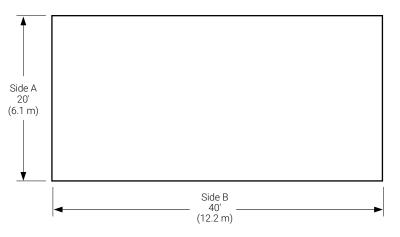


Fig. 17 Typical freezer example – single-phase

DETERMINE FREEZER OPERATING TEMPERATURE

Determine the temperature at which your freezer operates. If it operates at more than one temperature, or if the operating temperature may be changed in the future, base the design on the lowest anticipated operating temperature.

RECORD INSULATION R-VALUE

The insulation R-value is the thermal resistance of the floor's insulation. Normally the R-value will be printed on the insulation material. If that is not the case, you can calculate it by dividing the insulation thickness in inches by the insulation thermal conductivity.

Example: MI heating cables directly embedded - Single-phase

Area	40 ft x 20 ft = 800 ft ²
	(12.2 m x 6.1 m = 74 m ²)
Freezer operating temperature	-30°F (-34°C)
Insulation R-value	R-20 (20 ft ^{2.} °F·hr/Btu)
Supply voltage	208 V, single-phase

Example: MI heating cables directly embedded - Three-phase

Area

80 ft x 80 ft = 6400 ft² $(24.4 \text{ m x } 24.4 \text{ m} = 595 \text{ m}^2)$ -20°F (-29°C) Freezer operating temperature R-20 (20 ft^{2.}°F·hr/Btu) 208 V, three-phase

Step 2 Determine heat loss and freezer load

Insulation R-value

Supply voltage

In Table 11, we have calculated the heat loss for directly embedded MI heating cable systems based on the freezer temperatures and the floor insulation R-values; from this table, you will select your design power and freezer load. If your calculated R-value or freezer operating temperature does not match the values in the table, use the values that give the higher design power.

Within each cell, there are two numbers; design power and freezer load. Freezer load is the additional cooling load imposed on the cooling system by the freezer frost heave prevention heating cable. It is the heat transferred through the insulation into the freezer, expressed in W/ft² (W/m²) of floor area.

	Prevention System sign Steps (Embedded)
1.	Determine the freezer configuration
2.	Determine heat loss and freezer load
3.	Select the heating cable, layout and length
4.	Determine the heating cable spacing
5.	Determine the electrical parameters
6.	Select the accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Freezer Frost Heave

TABLE 11MI HEATING CABLE: DESIGN POWER REQUIREMENT AND FREEZER LOAD BASEDON 40°F (5°C) CONTROL

ating				F	loor ins	ulation R-v	value (ft	²∙°F∙hr/Bt	tu)	
ating				R-10	F	R-20	R	-30	R·	·40
(_1°C)	Design power	W/ft² (W/m²)	0.5	(5.4)	0.2	(2.2)	0.1	(1.1)	0.1	(1.1)
(-10)	Freezer load	W/ft² (W/m²)	0.7	(7.5)	0.4	(4.3)	0.3	(3.2)	0.3	(3.2)
(_7°C)	Design power	W/ft² (W/m²)	0.6	(6.5)	0.4	(4.3)	0.2	(2.2)	0.1	(1.1)
(-7.0)	Freezer load	W/ft² (W/m²)	0.8	(8.6)	0.5	(5.4)	0.4	(4.3)	0.3	(3.2)
(_12°C)	Design power	W/ft² (W/m²)	0.9	(9.7)	0.6	(6.5)	0.3	(3.2)	0.2	(2.2)
(-12-0)	Freezer load	W/ft² (W/m²)	1.0	(10.8)	0.6	(6.5)	0.4	(4.3)	0.3	(3.2)
0°F (-18°C)	Design power	W/ft² (W/m²)	1.1	(11.8)	0.7	(7.5)	0.5	(5.4)	0.3	(3.2)
(-18 C)	Freezer load	W/ft² (W/m²)	1.3	(14.0)	0.8	(8.6)	0.5	(5.4)	0.4	(4.3)
(_ <u>_</u>)	Design power	W/ft² (W/m²)	1.4	(15.1)	0.8	(8.6)	0.6	(6.5)	0.4	(4.3)
(-23 0)	Freezer load	W/ft^2 (W/m^2)	1.5	(16.1)	0.8	(8.6)	0.6	(6.5)	0.5	(5.4)
(_20°C)	Design power	W/ft² (W/m²)	1.6	(17.2)	0.9	(9.7)	0.7	(7.5)	0.5	(5.4)
(-29.0)	Freezer load	W/ft² (W/m²)	1.8	(19.4)	1.0	(10.8)	0.7	(7.5)	0.6	(6.5)
(_24°C)	Design power	W/ft² (W/m²)	1.7	(18.3)	1.1	(11.8)	0.8	(8.6)	0.6	(6.5)
(-34 0)	Freezer load	W/ft^2 (W/m^2)	2.0	(21.5)	1.1	(11.8)	0.8	(8.6)	0.6	(6.5)
(-40°C)	Design power	W/ft² (W/m²)	2.0	(21.5)	1.2	(12.9)	0.8	(8.6)	0.7	(7.5)
	Freezer load	W/ft² (W/m²)	2.3	(24.7)	1.2	(12.9)	0.8	(8.6)	0.7	(7.5)
	ating (-1°C) (-7°C) (-12°C) (-12°C) (-23°C) (-23°C) (-29°C) (-34°C) (-40°C)	$(-1^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ Freezer load \\ \hline (-7^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-7^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-12^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-12^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-23^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-23^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-29^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-34^{\circ} C) \qquad \begin{array}{c} Design power \\ Freezer load \\ \hline (-40^{\circ} C) \qquad \end{array} \right)$		$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{ c c c c c c c } \hline \mbox{R-10} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c } \hline R-10 & R-20 \\ \hline R-10 & R-10 \\ \hline R-10$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline R-10 & R-20 & R-30 & R$

Example: MI heating cables directly embedded - Single-phase

Freezer operating temperature $-30^{\circ}F(-34^{\circ}C)$ (from Step 1)Insulation R-valueR-20 (20 ft^{2.}°F·hr/Btu) (from Step 1)Design power 1.1 W/ft^2 (11.8 W/m²)Freezer load 1.1 W/ft^2 (11.8 W/m²)

Example: MI heating cables directly embedded - Three-phase

Freezer operating temperature Insulation R-value Design power Freezer load -20°F (-29°C) (from Step 1) R-20 (20 ft^{2.}°F·hr/Btu) (from Step 1) 0.9 W/ft² (9.7 W/m²) 1.0 W/ft² (10.8 W/m²)

Freezer Frost Heave Prevention System Design Steps (Embedded) Determine the 1 freezer configuration 2. Determine heat loss and freezer load 3. Select the heating cable, layout and length 4. Determine the heating cable spacing 5. Determine the electrical parameters 6. Select the accessories

- Select the control system
- Select the power distribution
- 9. Complete the Bill
 - of Materials

Step Select the heating cable, layout and length

To select the correct MI heating cable for the heated area, you must determine the wattage required for the area or subsection area.

For small freezers, one heating cable may be sufficient. For large freezers, it may be necessary to divide the freezer into two or more equal subsection areas. To balance the load in a three-phase circuit, three cables will be required, or a multiple of three cables when more than one three-phase circuit is required. If the heating cables are to be embedded in a concrete subfloor, divide the area so that the heating cables will not cross any joints in the subfloor.

The heating cables shown in Table 12 are general purpose cables and may be used for a variety of applications depending on the supply voltage; the heating cables in Table 13 have been optimized for frost heave prevention applications. If assistance is required to select heating cables for irregular shaped areas or applications outside the scope of this design guide, contact your nVent representative for assistance in designing a custom heating cable.

SINGLE-PHASE SUPPLY

Small freezer areas require only one heating cable. Large freezer areas may require two or more heating cables.

- · Divide large freezer areas into equal subsection areas, if possible.
- Calculate the power required for the total area (small freezers) or for each subsection area (large freezers) by multiplying the design power (from Table 11) by the total area or subsection area.

Power required = Design power x Total area (or Subsection area)

Simply select the heating cable from Table 12 or Table 13 based on the total area or subsection area. Under the appropriate voltage, make sure that the total area or subsection area falls within the minimum and maximum range of the "Area coverage" columns and verify that the "Cable wattage" shown directly across from the "Area coverage" is equal to or higher than the calculated "Power required" for the total area or subsection area (see example following).

Note: If two or more cables in the Tables meet the requirements, use the cable with the lower wattage.

In cases where the freezer area has been divided into equal subsections, select the appropriate number of heating cables. Where heating cables are directly embedded in concrete subfloors, calculate the wattage required for each area bounded by joints in the subfloor and select an appropriate cable for each area.

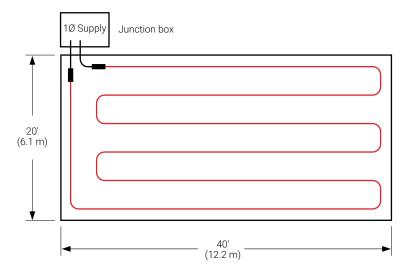
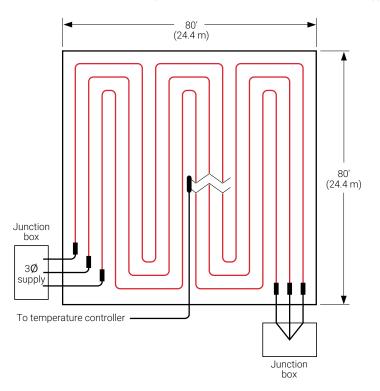


Fig. 18 Single-phase layout


Example: MI heating cables directly embedded - Single-phase						
Area	800 ft² (74 m²) (See Fig. 18)					
Design power	1.1 W/ft² (11.8 W/m²) (from Step 2)					
Power required	Design power x Area = 1.1 W/ft ² x 800 ft ² = 880 W (11.8 W/m ² x 74 m ² = 880 W)					
Supply voltage	208 V, single-phase (from Step 1)					
Catalog number	SUB19					
Cable wattage	885 W					
Heated length	245 ft (74.7 m)					
Quantity	1					

rig. to Single-phase layout

THREE-PHASE SUPPLY

Designing the frost heave prevention system using a three-phase voltage supply has the added advantages of fewer circuits, reduced distribution costs, and a balanced heating system load and is recommended for large freezers.

Three-phase voltages include 208/120 V, 480/277 V, and 600/347 V. When selecting heating cables for three-phase voltages, cable layout will be easier if the heating cables are wye connected (Fig. 19); therefore select the cables based on the phase-to-neutral voltage (e.g., select 277 V cables for a 480 V supply).

Fig. 19 Three-phase wye connected heating cable layout

Since a balanced three-phase system requires three cables, each cable will occupy 1/3 of the freezer area when installed.

- Calculate the "Power required" by multiplying the design power from Table 11 by the total freezer area.
- Divide the total freezer area by three to determine the "Area coverage for each cable."
- · Calculate the "Wattage for each cable" by dividing the "Power required" by three.

Wattage for each cable = (Design power x Total freezer area) / 3

Simply select the heating cable from Table 12 on page 248 or Table 13 on page 249 based on the area coverage for each cable. Under the appropriate voltage, make sure that the area coverage for each cable falls within the minimum and maximum range of the "Area coverage" columns and verify that the "Cable wattage" shown directly across from the "Area coverage" is equal to or higher than the calculated "Wattage for each cable" (see example following). Three of the same cables are required for balanced three-phase systems.

Note: If two or more cables in the Tables meet the requirements, use the cable with the lower wattage.

Note: For very large freezers, it may be necessary to divide the freezer into subsections and use two or more three-phase circuits.

Example: MI heating cables directly embedded – Three-phase

Area	6400 ft² (595 m²) (see Fig. 19)
Design power	0.9 W/ft² (9.7 W/m²) (from Step 2)
Power required	(Design Power x Area) = (0.9 W/ft ² x 6400 ft ²) = 5760 W (9.7 W/m ² x 595 m ²) = 5760 W
Area coverage for each cable	Area/3 = 6400 ft²/3 = 2133 ft² (595 m²/3 = 198.3 m²)
Wattage for each cable	Power required/3 = 5760/3 = 1920 W
Supply voltage	208 V, three-phase (from Step 1) (select 120 volt cable for wye connection)
Catalog number	SUB8
Cable wattage	2300 W
Cable voltage	120 V
Heated length	550 ft (167.6 m)
Quantity	3

TABLE 12 SELECTION TABLE FOR MI HEATING CABLES FOR DIRECTLY EMBEDDED CABLES

		Area c	overage		Cable	Heate	d length ¹	
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	wattage (W)	(ft)	(m)	Heating cable current (A) ²
120 V and 2	08 V, three	phase wye						
SUA3	205	700	19.1	65.1	500	140	42.7	4.2
SUA4	220	340	20.4	31.6	550	68	20.7	4.6
SUA7	300	480	27.9	44.6	750	95	29.0	6.3
SUA8	310	885	28.8	82.2	800	177	53.9	6.7
SUB1	420	660	39.0	61.3	1000	132	40.2	8.3
SUB2	400	1200	37.2	111.5	1000	240	73.1	8.3
SUB3	520	1400	48.3	130.1	1300	280	85.3	10.8
SUB4	600	1600	55.8	148.7	1500	320	97.5	12.5
SUB5	750	1300	69.7	120.8	1800	260	79.2	15.0
SUB6	780	1875	72.5	174.3	1900	375	114.3	15.8
SUB7	940	1550	87.4	144.1	2300	310	94.5	19.2
SUB8	930	2750	86.4	255.6	2300	550	167.6	19.2
SUB9	1250	3150	116.2	292.8	3000	630	192.0	25.0
SUB10	1700	3585	158.0	333.2	4300	717	218.5	35.8
208 V								
SUA1	260	540	24.2	50.2	650	108	32.9	3.1
SUA6	650	1320	60.4	122.7	1560	264	80.5	7.5
SUB19	350	1225	32.5	113.8	885	245	74.7	4.3
SUB20	480	1700	44.6	158.0	1210	340	103.6	5.8
SUB21	650	2200	60.4	204.5	1640	440	134.1	7.9
SUB22	820	2625	76.2	244.0	2060	525	160.0	9.9
240 V								
SUB19	350	1225	32.5	113.8	1175	245	74.7	4.9
SUB20	480	1700	44.6	158.0	1615	340	103.6	6.7
SUB21	650	2200	60.4	204.5	2180	440	134.1	9.1
SUB22	820	2625	76.2	244.0	2745	525	160.0	11.4
277 V and 4	80 V, three-	phase wye				1		
SUB19	400	1225	37.2	113.8	1565	245	74.7	5.6
SUB20	550	1700	51.1	158.0	2150	340	103.6	7.8
SUB21	720	2200	66.9	204.5	2900	440	134.1	10.5
SUB22	940	2625	87.4	244.0	3650	525	160.0	13.2
347 V and 6	00 V, three	-phase wye						
SUB11	540	1125	50.2	104.6	1400	225	68.6	4.0
SUB12	770	1550	71.6	144.1	1950	310	94.5	5.6
SUB13	1060	2140	98.5	198.9	2700	428	130.5	7.8
SUB14	1440	2740	133.8	254.6	3700	548	167.0	10.7

 $^{\rm 1}$ Tolerance on heating cable length is –0% to +3%

²Single-phase current shown

Note: Type SUA cables supplied with 7 ft (2.1 m) long cold lead; type SUB cables supplied with 15 ft (4.6 m) long cold leads.

	Area coverage			Cable	Heated	length ¹		
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	wattage (W)	(ft)	(m)	Heating cable current (A) ²
120 V and 20	8 V, three-	phase Wye						
FFHP1	163	290	15.1	27.0	405	58	17.7	3.4
FFHP2	205	360	19.1	33.5	510	72	22.0	4.3
FFHP3	231	415	21.5	38.6	580	83	25.3	4.8
FFHP4	282	510	26.2	47.4	705	102	31.1	5.9
FFHP5	328	585	30.5	54.4	820	117	35.7	6.8
FFHP6	392	700	36.4	65.1	980	140	42.7	8.2
FFHP7	450	800	41.8	74.3	1125	160	48.8	9.4
FFHP8	519	925	48.2	86.0	1300	185	56.4	10.8
FFHP9	637	1130	59.2	105.0	1590	226	68.9	13.3
FFHP10	733	1310	68.1	121.7	1830	262	79.9	15.3
FFHP11	900	1600	83.6	148.7	2250	320	97.6	18.8
FFHP12	1186	2130	110.2	198.0	2965	426	129.9	24.7
FFHP13	1470	2640	136.6	245.4	3675	528	161.0	30.6
FFHP14	1862	3320	173.0	308.6	4650	664	202.4	38.8
208 V								
FFHP15	281	505	26.1	46.9	700	101	30.8	3.4
FFHP16	352	630	32.7	58.6	880	126	38.4	4.2
FFHP17	401	720	37.2	66.9	1000	144	43.9	4.8
FFHP18	492	880	45.7	81.8	1230	176	53.7	5.9
FFHP19	568	1015	52.8	94.3	1420	203	61.9	6.8
FFHP20	678	1215	63.0	112.9	1700	243	74.1	8.2
FFHP21	778	1390	72.3	129.2	1945	278	84.8	9.4
FFHP22	901	1600	83.8	148.7	2250	320	97.6	10.8
FFHP23	1098	1970	102.1	183.1	2745	394	120.1	13.2
FFHP24	1268	2275	117.8	211.4	3170	455	138.7	15.2
FFHP25	1553	2785	144.4	258.8	3885	557	169.8	18.7
240 V								
FFHP26	326	580	30.3	53.9	815	116	35.4	3.4
FFHP27	407	725	37.9	67.4	1020	145	44.2	4.3
FFHP28	463	830	43.0	77.1	1160	166	50.6	4.8
FFHP29	567	1015	52.7	94.3	1420	203	61.9	5.9
FFHP30	656	1170	61.0	108.7	1640	234	71.3	6.8
FFHP31	786	1395	73.1	129.6	1965	279	85.1	8.2
FFHP32	900	1600	83.6	148.7	2250	320	97.6	9.4
FFHP33	1038	1850	96.5	171.9	2600	370	112.8	10.8
FFHP34	1274	2260	118.4	210.0	3185	452	137.8	13.3
FFHP35	1471	2610	136.7	242.6	3680	522	159.1	15.3
FFHP36	1800	3200	167.3	297.4	4500	640	195.1	18.8

 $^{\rm 1}$ Tolerance on heating cable length is –0% to +3%. $^{\rm 2}$ Single-phase current shown

Note: Type FFHP cables supplied with 15 ft (4.6 m) long cold leads.

TABLE 13 SELECTION TABLE FOR MI HEATING CABLES FOR DIRECTLY EMBEDDED CABLES

		Area c	overage		Cable	Heated	l length 1	
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	wattage (W)	(ft)	(m)	Heating cable current (A) ²
277 V and 4	80 V, three-	phase wye						
FFHP37	375	670	34.9	62.3	940	134	40.9	3.4
FFHP38	468	840	43.5	78.1	1170	168	51.2	4.2
FFHP39	536	955	49.8	88.8	1340	191	58.2	4.8
FFHP40	656	1170	60.9	108.7	1640	234	71.3	5.9
FFHP41	758	1350	70.4	125.5	1895	270	82.3	6.8
FFHP42	908	1610	84.4	149.6	2270	322	98.2	8.2
FFHP43	1037	1850	96.4	171.9	2590	370	112.8	9.4
FFHP44	1201	2130	111.6	198.0	3000	426	129.9	10.8
FFHP45	1462	2625	135.8	244.0	3655	525	160.1	13.2
FFHP46	1697	3015	157.7	280.2	4240	603	183.8	15.3
FFHP47	2074	3700	192.7	343.9	5185	740	225.6	18.7
347 V and 6	00 V, three-	phase wye						
FFHP48	470	840	43.7	78.1	1175	168	51.2	3.4
FFHP49	588	1050	54.7	97.6	1470	210	64.0	4.2
FFHP50	672	1195	62.4	111.1	1680	239	72.9	4.8
FFHP51	819	1470	76.1	136.6	2050	294	89.6	5.9
FFHP52	950	1690	88.3	157.1	2375	338	103.0	6.8
FFHP53	1133	2025	105.3	188.2	2830	405	123.5	8.2
FFHP54	1295	2325	120.3	216.1	3240	465	141.8	9.3
FFHP55	1500	2675	139.4	248.6	3750	535	163.1	10.8
FFHP56	1838	3275	170.8	304.4	4600	655	199.7	13.3
FFHP57	2126	3775	197.6	350.8	5315	755	230.2	15.3

 1 Tolerance on heating cable length is -0% to +3%.

² Single-phase current shown

Note: Type FFHP cables supplied with 15 ft (4.6 m) long cold leads.

	Freezer Frost Heave Prevention System sign Steps (Embedded)
1.	Determine the freezer configuration
2.	Determine heat loss and freezer load
3.	Select the heating cable, layout and length
4.	Determine the heating cable spacing
5.	Determine the electrical parameters
6.	Select the accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Freezer Frost Heave Prevention System Design Steps (Embedded)

freezer configuration

2. Determine heat loss and freezer load

3. Select the heating cable, layout and

length

4. Determine the heating cable spacing

5. Determine the

accessories

Select the control system

8. Select the power

9. Complete the Bill

of Materials

distribution

6. Select the

electrical parameters

1. Determine the

Step Determine the heating cable spacing

To determine the spacing between runs of heating cables, use the formula below:

Cable spacing (in) =	Area (ft²) x 12 in
	Heated length (ft)
Cable spacing (cm) =	Area (m²) x 100 cm
	Heated length (m)

Note: If a large area has been divided into subsections or if a three-phase voltage supply is used, the "Area" in the above equations will be the subsection area or area coverage for each cable and the "Heated length" will be the length of the selected cable.

Example: MI heating cables directly embedded - Single-phase

Area	
Catalog number	
Heated length	
Cable spacing	

800 ft² (74 m²) (from Step 3) SUB19 (from Step 3) 245 ft (74.7 m) (from Step 3) 800 ft² x 12 / 245 ft = 39.2 in **rounded to 39 in** 74 m² x 100 / 74.7 m = 99.1 cm **rounded to 99 cm**

Example: MI heating cables directly embedded – Three-phase

Area coverage for each cable Catalog number Heated length Cable spacing

2133 ft² (198.3 m²) (from Step 3) SUB8 (from Step 3) 550 ft (167.6 m) (from Step 3) 2133 ft² x 12 / 550 ft = 46.5 in **rounded to 47 in** 198.3 m² x 100 / 167.6 m = 118.3 cm **rounded to 118 cm**

Step Determine the electrical parameters

DETERMINE NUMBER OF CIRCUITS

For single-phase circuits, when connecting individual heating cables to circuit breakers, the cable current draw must not exceed 80% of the circuit breaker rating. To reduce the number of circuits, multiple heating cables may be connected in parallel. When multiple cables are connected in parallel, the total of the individual heating cable currents must not exceed 80% of the circuit breaker rating. The single-phase heating cable current is shown in Table 12 and Table 13.

For three-phase circuits used in frost heave protection systems, the three heating cables are generally connected in the wye configuration shown in Fig. 21 on page 46. For a wye connected three-phase circuit, the current draw is the same as the single-phase heating cable current and must not exceed 80% of the 3-pole circuit breaker rating.

A 30-mA ground-fault protection device (GFPD) must be used to provide protection from arcing or fire, and to comply with warranty requirements, agency certifications, and national electrical codes. If the heating cable is improperly installed, or physically damaged, sustained arcing or fire could result. If arcing does occur, the fault current may be too low to trip conventional circuit breakers. **WARNING**: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

SELECT BRANCH CIRCUIT BREAKER SIZE

Record the number and ratings of the circuit breakers to be used. Use ground-fault protection devices (GFPDs) for all applications. For three-phase circuits, ground fault may be accomplished using a shunt trip 3-pole breaker and a ground fault sensor.

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of the wattages of the selected heating cables.

Calculate the Total Transformer Load as follows:

Transformer load (kW) = $\frac{\text{Cable}_1(W) + \text{Cable}_2(W) + \text{Cable}_3(W)... + \text{Cable}_N(W)}{\text{Cable}_2(W) + \text{Cable}_3(W)... + \text{Cable}_N(W)}$

1000

Example: MI heating cables directly embedded – Single-phase

Amps	4.3 A (from Table 12)
Circuit breaker size	15 A breaker, 80% loading 12 A
Number of circuit breakers	1
Cable power output	885 W (from Step 3)
Number of cables	1 (from Step 3)
Transformer load	885 W / 1000 = 0.9 kW
Number of cables	1 (from Step 3)

Example: MI heating cables directly embedded - Three-phase

Amps/cable	19.2 A (from Table 12)
Circuit breaker size	25 A, 3-pole breaker, 80% loading 20 A
Number of circuit breakers	1 (3 cables wye connected – see Fig. 21)
Cable power output	2300 W (from Step 3)
Number of cables	3 (from Step 3)
Total Transformer load	(2300 W x 3) / 1000 = 6.9 kW

Record the number and ratings of the circuit breakers to be used and total transformer load on the worksheet.

-	Freezer Frost Heave Prevention System ign Steps (Embedded)
1.	Determine the freezer configuration
2.	Determine heat loss and freezer load
3.	Select the heating cable, layout and length
4.	Determine the heating cable spacing
5.	Determine the electrical parameters
б.	Select the accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step 6 Select the accessories

For your embedded system, determine the number of junction boxes required.

SELECT JUNCTION BOX

Select a UL Listed and/or CSA Certified junction box that is suitable for the location, such as the RAYCHEM D1297TERM4. Use a box with minimum internal volume of 16 cubic inches if the box is metallic and 19 cubic inches if the box is not metallic. Metal junction boxes are recommended.

Note: The junction box must be accessible according to the national electrical codes.

After determining the number of heating cables required, the number of circuits, and the junction box locations, do a trial layout. In making the trial layout, follow these recommendations:

- · Install the heating cables in a sand layer beneath the insulation.
- Maintain the design spacing within 4 in (10 cm).
- When directly embedded in the concrete floor, do not cross expansion joints in the floor.
- Do not route the cables closer than 4 in (10 cm) to the edge of the subfloor, drains, anchors, or other material.

TABLE 14 ACCESSORIES

Catalog number	Description	Standard packaging	Usage
D1297TERM4	A cast aluminum junction box (Type 3) for installation in nonhazardous and CID2 locations. Three 1/2-in NPT entries on bottom, provided with plugs. Includes 4-pole terminal block (CSA - 600 V, 65 A, 18 - 6 AWG; UL - 300 V, 65 A, 18 - 6 AWG). External mounting feet. CSA approved for Class I, Div. 2, Groups A, B, C, and D. (for MI only) Enclosure dimensions: 6 in x 6 in x 4 in (150 mm x 150 mm x 100 mm).	1	For MI cable only

Quantity required

Example: MI heating cables directly	embedded - Single-phase
Junction box	D1297TERM4
Quantity required	1
Example: MI heating cables directly	embedded - Three-phase
Junction box	Contractor supplied

2

	Freezer Frost Heave Prevention System ign Steps (Embedded)
1.	Determine the freezer configuration
2.	Determine heat loss and freezer load
3.	Select the heating cable, layout and length
4.	Determine the heating cable spacing
5.	Determine the electrical parameters
6.	Select the accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Select the control system

For MI cable, a temperature controller must be used to maintain the subfloor temperature at 40°F (4°C). For installations where temperature control and temperature monitoring is desired, a nVent RAYCHEM C910-485 or RAYCHEM ACS-30 controller is recommended. For additional information on temperature controller options, refer to "Table 8" on page 235.

TABLE 15CONTROL SYSTEMS

	Catalog number	Description
Electronic thermostat	s and accessories	
	ECW-GF	Electronic ambient sensing controller with 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a Type 4X rated enclosure. The controller features an AC/DC dry alarm contact relay. An optional ground-fault display panel (ECW-GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
2 2	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) that can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
	MI-GROUND-KIT	Grounding kit for nonmetallic enclosures (for MI only)

Electronic controllers and sensors

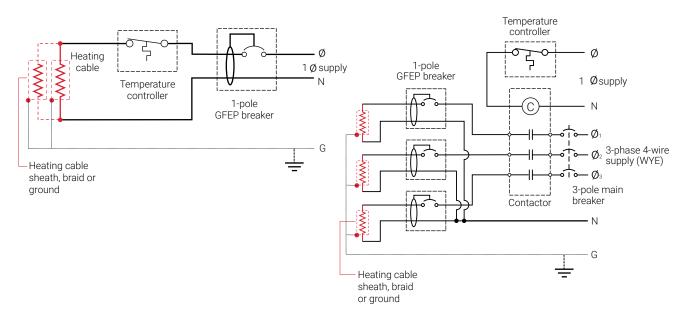

C		The RAYCHEM C910-485 is a compact, full featured, microprocessor-based, single-point commercial heating cable controller. The C910-485 provides control and monitoring of electrical heating cable circuits for commercial heating applications, with built-in ground-fault protection. The C910-485 can be set to monitor and alarm for high and low temperature, high and low current, ground-fault level, and voltage. Communications modules are available for remote control and configuration.
---	--	--

TABLE 15CONTROL SYSTEMS

	Catalog number	Description
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in various commercial applications such as pipe freeze protection, roof and gutter de-icing, surface snow melting, hot water temperature maintenance and floor heating. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers. The ProtoNode-RER is for BACnet® or Metasys® N2 systems.
	RTD-200 RTD10CS RTD50CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers. RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing
		Example: MI heating cables directly embedded – Single-phaseSingle circuit, electronic controllerRAYCHEM C910-485Quantity1
		Example: MI heating cables directly embedded - Three-phaseSingle circuit, monitoring requestedRAYCHEM ACS-30*Quantity1*Use ACS-30 General part number (P000001232) for custom three-phase panels.Please contact your nVent representative for a custom ACS-PCM2-5 panel quotation.
Freezer Frost Heave	Step 🛙 Select the	power distribution
Prevention System Design Steps (Embedded)		Power to the heating cables can be provided in three ways:
1. Determine the freezer configuration		1. Directly through the temperature controller
2. Determine heat loss and freezer load		2. Through external contactors activated by a temperature controller
3. Select the heating		3. Through an HTPG power distribution panel
cable, layout and length		SINGLE CIRCUIT CONTROL
4. Determine the heating cable spacing		Heating cable circuits that do not exceed the current rating of the selected controller can be switched directly (Fig. 20). When the total electrical load exceeds
5. Determine the electrical parameters		the rating of the controller or if a single-pole temperature controller is used to control a three-phase circuit (Fig. 21), an external contactor is required.
6. Select the accessories		GROUP CONTROL
7. Select the control system		If the temperature controller will activate multiple single-phase or three-phase
8. Select the power distribution		circuits (group control), then an external contactor must be used. In Fig. 20, three single-phase circuits are activated by a temperature controller through an
9. Complete the Bill of Materials		external contactor.

Single circuit control

Group control

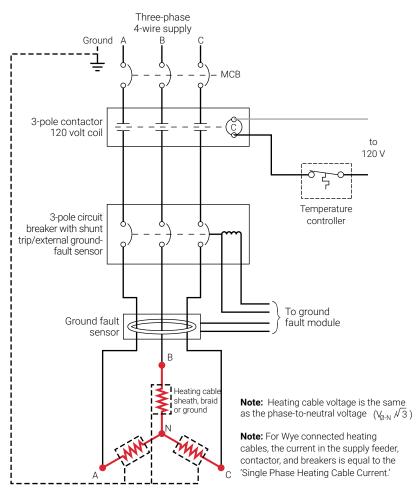


Fig. 21 Typical three-phase wye connected cables with temperature controller and contactor

Large systems with many circuits should use an HTPG power distribution panel. The HTPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for freeze protection and broad temperaturemaintenance heat-tracing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with a temperature control system.

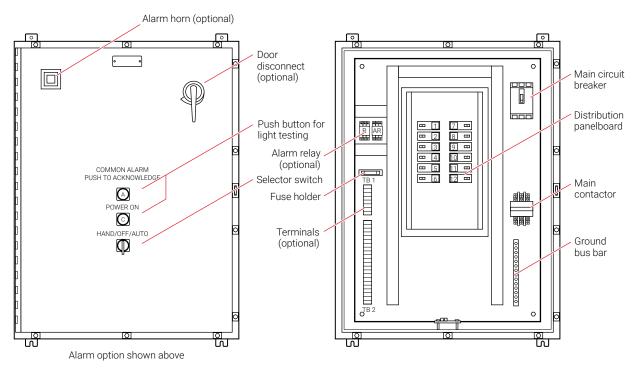


Fig. 22 HTPG power distribution panel

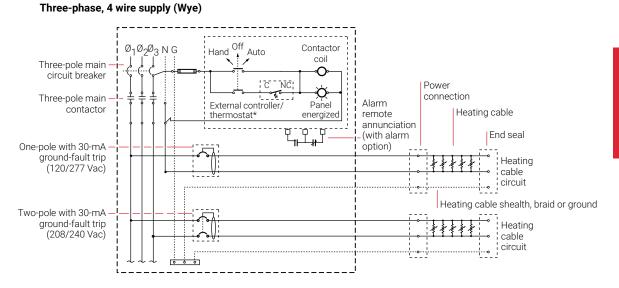


Fig. 23 Typical HTPG power schematic

TABLE 16 POWER DISTRIBUTION

	Catalog number	Description
Power distribution a	nd control panels	
	HTPG	Heat-tracing power distribution panel with ground-fault and monitoring for group control.

D	Freezer Frost Heave Prevention System esign Steps (Embedded)
1	. Determine the freezer configuration
2	2. Determine heat loss and freezer load
3	8.Select the heating cable, layout and length
Δ	L Determine the heating

Step Complete the Bill of Materials

If you used the Design Worksheet to document all your design parameters, you should have all the details necessary complete your Bill of Materials.

- electrical parameters
- 6.Select the accessories
- 7.Select the control
- system
- 8. Select the power distribution system

9.Complete the Bill of

Materials

RAYSOL AND MI HEATING CABLE IN CONDUIT FREEZER FROST HEAVE PREVENTION DESIGN WORKSHEET

Determine freezer area (from scale drawing)	Determine freezer operating temperature	Record insulation R-value	Supply voltage
Side A (length)X=(ft/m)Side B (width)Freezer area(ft/m)(ft/m)(ft²/m²)	°F/°C	ft ^{2.} °F·hr/Btu	Volts
Example: RaySol and MI heating cables			
80 ft 40 ft 3200 ft	2		
$\frac{80 \text{ ft}}{\text{Side A (length) (ft)}} \times \frac{40 \text{ ft}}{\text{Side B (width) (ft)}} = \frac{3200 \text{ ft}}{\text{Freezer are}}$	a (ft²) -20°F	R-40 (40 ft2·°F·hr/Btu)	208 Volts
Step 🛙 Select the heating cable			
RaySol heating cable	MI heating ca	able	
Supply voltage 120 ∨ 208 ∨ 240 ∨ 277 ∨	Supply voltag 120 V 208 V 277 V Freezer side	ge A length (ft/m):	
Catalog number:	Catalog num	ber: t (W):	
Example: RaySol heating cable Supply voltage ✓ 208 V		A length: 80 ft	
Catalog number: RaySol-2	Catalog numl Power output		

Based on the insulation R-value and freezer operating temperature you recorded in Step 1, use Table 4 to select the following:

Conduit spacing (in/cm) _____

Freezer load (W/ft²) (W/m²) _

Example: For RaySol and MI heating cables Conduit spacing: 96 in

Freezer load: 0.5 W/ft²

RaySol heating cable in conduit	MI heating cable in conduit
1. Estimate the number of conduit runs Imperial	1. Estimate the number of conduit runs Imperial
$\left(\frac{1}{1} \times 12\right) / \frac{1}{1} \times 12$ Conduit spacing (in) = Estimated number of conduit runs	(<u></u>
Metric	Metric
(x 100) / = Estimated number Side B (m) Conduit spacing (cm) Conduit runs	(x 100) / = Side B (m) Conduit spacing (cm) Estimated number of conduit runs
If necessary, round to the next whole number	If necessary, round to the next whole number
Example: RaySol heating cable	Example: MI heating cable
40 ft 96 in 5	(40 ft 96 in 5
$\left(\frac{40 \text{ ft}}{\text{Side B (ft)}} \times 12\right) / \frac{96 \text{ in}}{\text{Conduit spacing (in)}} = \frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}$	$\left(\frac{40 \text{ ft}}{\text{Side B (ft)}} \times 12\right) / \frac{96 \text{ in}}{\text{Conduit spacing (in)}} = \frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}{\frac{5}$
2. Estimate the heating cable length required for conduit runs	2. Determine the number of MI heating cables
Side A (ft/m) x Image: A state of the st	Number of conduit runs Number of heating cables required
Example: RaySol heating cable	Example: MI heating cable
$\frac{80 \text{ ft}}{\text{Side A (ft)}} \times \frac{5}{\text{Number of}} = \frac{400 \text{ ft}}{\text{Heating cable}}$	<u> </u>
Side A (ft) Number of Heating cable conduit runs length required (ft)	Number of conduit runs Number of heating cables required
3. Determine the maximum circuit length (see Table 5)	
Heating cable length required (ft/m) Supply voltage (V) (ft/m) Maximum circuit length (ft/m)	
Is the heating cable length required > the maximum circuit length?	
 No – One circuit is sufficient 	
Yes – Multiple circuits are required	
Number of circuits Power supply	
Example: RaySol heating cable	
400 ft 208 V 410 ft	
Heating cable Supply voltage Ingth required (ft) (V) (ft)	
Is the heating cable length required > the maximum circuit length?	
✓ No – One circuit is sufficient	
 No - One circuit is sufficient <u>1</u> <u>One 20 A circuit breaker</u> Power supply 	

4. Determine layout

- Is Side A x $2 \le$ to the maximum circuit length?
- □ Yes Conduit can be looped in hairpin configuration
 - □ Odd number of conduit runs One conduit run will be straight
 - D Even number of conduit runs All conduit run are looped in hairpin configuration
- □ No Use a straight run layout

Example: RaySol heating cable

Is Side A x $2 \le$ to the maximum circuit length?

✓ Yes – Conduit can be looped in hairpin configuration

✓ Odd number of conduit runs – One conduit run will

be straight

Layout: Run in two hairpin loops and one straight run

5. Determine end allowances and kit connection kit allowances (see Table 6) and total heating cable length required. Determine end allowances

 $\underbrace{ \begin{array}{c} & x & 8 \ \text{ft} = \underline{ } \\ \text{Number of } \\ \text{hairpin conduits} \\ \hline & x & 8 \ \text{ft} = \underline{ } \\ \text{Number of straight } \\ \text{Heating cable length for end allowances} \\ \hline \\ \hline \\ \hline \\ \begin{array}{c} & 2 \\ \text{Number of } \\ \text{hairpin conduits} \\ \hline \\ \hline \\ \\ \hline \\ \\ \begin{array}{c} & 1 \\ \text{Number of straight} \\ \end{array} \\ x & 8 \ \text{ft} = \underline{ \begin{array}{c} & 16 \ \text{ft} \\ \\ \hline \\ \\ \end{array} \\ \hline \\ \hline \\ \begin{array}{c} & 8 \ \text{ft} \\ \end{array} \\ \hline \\ \hline \\ \begin{array}{c} & 8 \ \text{ft} \\ \end{array} \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \hline \\ \begin{array}{c} & 8 \ \text{ft} \\ \end{array} \\ \hline \\ \hline \\ \end{array} \\ \hline \end{array}$

run conduits
Heating cable length for end allowances_

Determine connection kit allowances

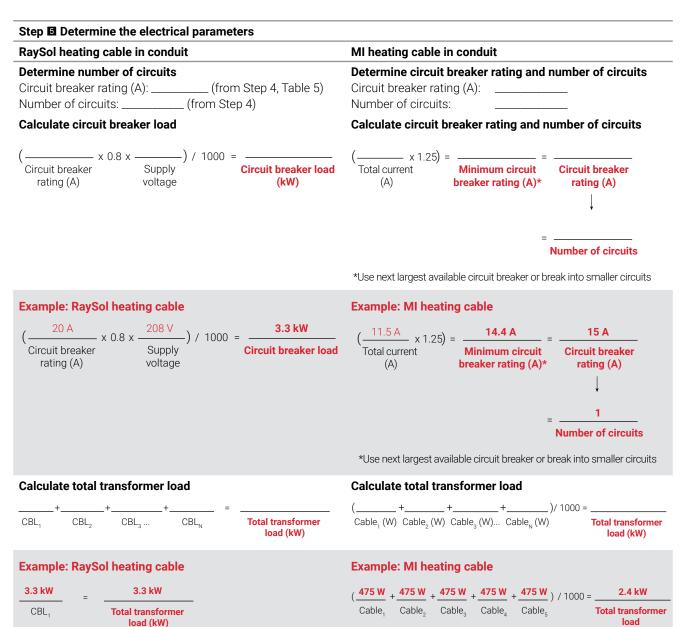
_____ x 4 ft =____ Number of FTC-XC kits for hairpin conduits

_____ x 4 ft = ____ Number of FTC-XC kits for straight run conduits

Heating cable length for connection kit allowances

Example: RaySol heating cable						
2 x 4 ft = 8 ft						
Number of FTC-XC kits for hairpin conduits						
1 x 4 ft = 4 ft						
Number of FTC-XC						
kits for straight run conduits						
Heating cable length for connection kit allowances	12 ft					

Determine total heating cable length required for conduit runs and allowances


+	+	=	
Heating cable length for conduit runs (ft/m)	Heating cable length for end allowances (ft/m)	Heating cable length for connection kit allowances (ft/m)	Total heating cable length required (ft/m)

436 ft Total heating cable length required (ft)

24 ft

Example: RaySol heating cable

400 ft	+	24 ft	+	12 ft	-
Heating cable ler for conduit runs		Heating cable leng for end allowances		Heating cable length for connection kit allowances (ft)	

Step 🖬 Select the connection kits and accessories					
Connection kits and accessories	Description	Quantity			
□ FTC-XC	Power connection and end seal				
□ FTC-HST	Low-profile splice/tee				
RayClic-E	Extra end seal	<u> </u>			
D1297TERM4	Cast aluminum junction box (for MI cable only)				
Example:					
✓ FTC-XC	Power connection and end seal	3	(for RaySol)		
✓ D1297TERM4	Cast aluminum junction box (for MI cable only)	5	(for MI)		

Step 🖬 Select the control system				
Thermostats, controllers, and accessories	Description	Quantity		
□ ECW-GF	Electronic thermostat with 25-ft sensor			
□ ECW-GF-DP	Remote display panel for ECW-GF			
MI-GROUND-KIT	Grounding kit for nonmetallic enclosures			
C 910-485	Microprocessor-based single-point heat-trace controller			
ACS-UIT2	ACS-30 user interface terminal			
□ ACS-PCM2-5	ACS-30 power control panel			
ProtoNode-RER	Multi-protocol gateway			
□ RTD10CS	Resistance temperature device for RAYCHEM C910-485 & ACS-30			
□ RTD-200	Resistance temperature device for RAYCHEM C910-485 & ACS-30			
□ RTD50CS	Resistance temperature device for RAYCHEM C910-485 & ACS-30			
Example: ✓ RAYCHEM C910-485	Microprocessor-based single-point heat-trace controller	1		

Step 🖪 Select the power distribution			
Power distribution	Description	Quantity	
L HTPG	Heat-tracing power distribution panel for group control		

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

MI CABLES DIRECTLY EMBEDDED FREEZER FROST HEAVE PREVENTION DESIGN WORKSHEET

Step Determine the freezer configuration						
Determine freezer area (from scale drawing)			Determine freezer operating temperature	Record insulation R-value	Supply voltage	Phase
Side A (length) (ft/m)	Side B (width) = (ft/m)	Freezer area (ft²/m²)	°F/°C	ft2·°F·hr/Btu	Volts	Phase
Example: 40 ft Side A (length) (ft)	Side B (width) (ft)	800 ft² Freezer area (ft ²)	−30°F	R-20 (20 ft2·°F·hr/ Btu)	208 V	Single phase
Step 🛛 Determi	ne the heat loss ar	nd freezer load				
the following:	ulation R-value and		temperature you recor		ble 11 to selec	t
Example: 1.1 W/ft ² Design power			1.1 W/ft² Freezer load	-		
Step 🛙 Select th	e heating cable, la	ayout and length				
Use Table 12 and	Table 13 to select	your heating cable	and determine your c	able wattage.		
Heating cable vo 120 V 208 V 240 V 277 V 347 V	ltage					
xDesign power(W/ft²) / (W/m²)	Area (ft²/m²) =	Power required (W)	Catalog number	Cable wattage (W)	Heated lengtl (ft)	n Quantity
Example:						
√ 208 V						
1.1 W/ft ²	800 ft ² =	880 W	SUB19	885 W	245 ft	1
Design power (W/ft ²)	Area (ft²)	Power required (W)	Catalog number	Cable wattage (W)	Heated lengtl (ft)	n Quantity

Step Determine the heat	ating cable spacing			
Imperial		Metric		
x 12 /	=	x 100 /.		=
	ated length (ft) Cable spacing (in)			Cable spacing (cm)
If necessary, round to whole	number.			
Example:				
800 ft ²	245 ft 39.2 in rounded to	39 in		
	eated length (ft) Cable spacing (in)		
Step G Determine the ele	ctrical parameters			
	rating and number of circuits	Number of circuits:		
Calculate circuit breaker ı	rating and number of circuits			
$\left(\frac{1}{\text{Total current (A)}} \times 1.25\right) =$	Minimum circuit breaker rating (A)*	= Circuit breaker ra	ting (A)	Number of circuits
*Use next largest available c	ircuit breaker or break into smaller circuits	3		
Example				
4.3 A	5.4 A	15 A		1
$\left(\frac{4.3 \text{ A}}{1.25}\right) =$ Total current (A)	Minimum circuit breaker rating (A)*	= Circuit breaker ra	= ·	Number of circuits
· · ·	ircuit breaker or break into smaller circuits			
Calculate total transforme	er load			
(+ Cable, (W) Cab	+ + +) / 100 Cable _N (W)	0 = Total trans	former load (kW)
Example				
885 W () / 1000 —			→ =	0.9 kW
Cable ₁			Total tra	ansformer load
Step 🖸 Select the access	ories			
Accessory	Description	Q	uantity	
D1297TERM4	Cast aluminum junction box	(
Example: ✓ D1297TERM4	Cast aluminum junction box	(1	

Step Select the control system			
Thermostats, controllers, and accessories	Description	Quantity	
ECW-GF	Electronic thermostat with 25-ft sensor		
ECW-GF-DP	Remote display panel for ECW-GF		
MI-GROUND-KIT	Grounding kit for nonmetallic enclosures		
C 910-485	Microprocessor-based single-point heat-trace controller		
ACS-UIT2	ACS-30 user interface terminal		
ACS-PCM2-5	ACS-30 power control panel		
ProtoNode-RER	Multi-protocol gateway		
□ RTD10CS	Resistance temperature device for RAYCHEM C910-485 & ACS-30		
□ RTD-200	Resistance temperature device for RAYCHEM C910-485 & ACS-30		
□ RTD50CS	Resistance temperature device for RAYCHEM C910-485 & ACS-30		
Example: ✓ RAYCHEM C910-485	Microprocessor-based single-point heat-trace controller	1	
Step 🛙 Select the power di	stribution		

HTPG Heat-tracing power distribution panel for group control	
a med doing power distribution parter of group control	

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

HEAT LOSS REPLACEMENT – RAYSOL AND MI HEATING CABLE SYSTEM

This step-by-step design guide provides the tools necessary to design a heat loss replacement system using nVent RAYCHEM RaySol self-regulating heating cable system or RAYCHEM Mineral Insulated heating cable system. For other applications or for design assistance, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	268
How to Use this Guide	268
Safety Guidelines	
Warranty	269
SYSTEM OVERVIEW	270
Typical System	271
Self-Regulating Heating Cable Construction	273
MI Heating Cable Construction	275
FLOOR HEATING APPLICATION DESIGN	276
Design Step by Step	276
Step 1 Determine the application	277
Step 2 Select the heating cable system and installation method	277
Step 3 Determine the floor configuration	
Step 4 Determine the heating cable spacing, layout and length	
Step 5 Determine the electrical parameters	
Step 6 Select the connection kits and accessories	
Step 7 Select the control system	
Step 8 Select the power distribution Step 9 Complete the Bill of Materials	
FLOOR HEATING PRE-DESIGN WORKSHEET	
RAYSOL HEATING CABLE FLOOR HEATING DESIGN WORKSHEET	
Heat Loss Replacement	
Comfort Floor Heating	320
MI HEATING CABLE FLOOR HEATING DESIGN WORKSHEET	325
Heat Loss Replacement	325
Comfort Floor Heating	
Radiant Space Heating	328

INTRODUCTION	
	nVent offers RAYCHEM RaySol and MI heating cable systems for large floor heating areas, like garages, loading docks, arcades, lobbies, foyers, gymnasiums, etc RaySol heating cables and MI heating cables can be directly attached to the bottom of the concrete floor or be directly embedded in the concrete floor or in a thick mortar bed.
	nVent also offers a full suite of best-in-class NUHEAT floor heating products for smaller floor heating areas, like kitchens, bathrooms, living spaces, shower benches, shower floors, granite counter tops, etc. For more information, refer to nVent.com/NUHEAT.
	If your application conditions are different than described in this guide, or if you have any questions, contact your nVent representative or call (800) 545-6258.
How to Use this Guide	
	This design guide presents nVent recommendations for designing large floor heating systems. It provides design and performance data, electrical sizing information, control selection and heating-cable layout suggestions. Following these recommendations will result in a reliable, energy-efficient system.
	Follow the design steps and use the appropriate design worksheets to document the project parameters that you will need for your project's Bill of Materials.
	OTHER REQUIRED DOCUMENTS
	This guide is not intended to provide comprehensive installation instructions. For complete floor heating system installation instructions, please refer to the following additional required documents:
	 RAYCHEM RaySol Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual (H58138)
	 RAYCHEM Mineral Insulated Heating Cable Floor Heating and Freezer Frost Heave Prevention Installation and Operation Manual (H58137)
	 Additional installation instructions are included with the connection kits, thermostats, controllers, and accessories
	If you do not have these documents, you can obtain them from the nVent web site at nVent.com.
	For products and applications not covered by this design guide, please contact your nVent representative or call (800) 545-6258.

As with any electrical equipment, the safety and reliability of any system depends on the guality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system components could damage the system and may result in inadequate performance, overheating, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide.

This symbol identifies important instructions or information.

A This symbol identifies particularly important safety warnings that must be followed.

MARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

nVent' standard limited warranty applies to RAYCHEM and RAYCHEM Floor Heating Systems.

FOR RAYCHEM RAYSOL AND MI HEATING CABLES

An extension of the limited warranty period to ten (10) years from the date of installation is available, except for the control and distribution systems, if a properly completed online warranty form is submitted within thirty (30) days from the date of installation. You can access the complete warranty on our web site at nVent.com.

SYSTEM OVERVIEW

There are three main floor heating applications:

- Heat loss replacement
- Comfort floor heating (includes concrete floor heating)
- Radiant space heating

nVent offers RaySol and MI heating cable systems for floor heating. Each product has specific design and installation considerations and this guide will address how to design the system that best suits your needs. RaySol and MI heating cables can be installed in multiple methods; however, the most common methods will be covered.

HEAT LOSS REPLACEMENT

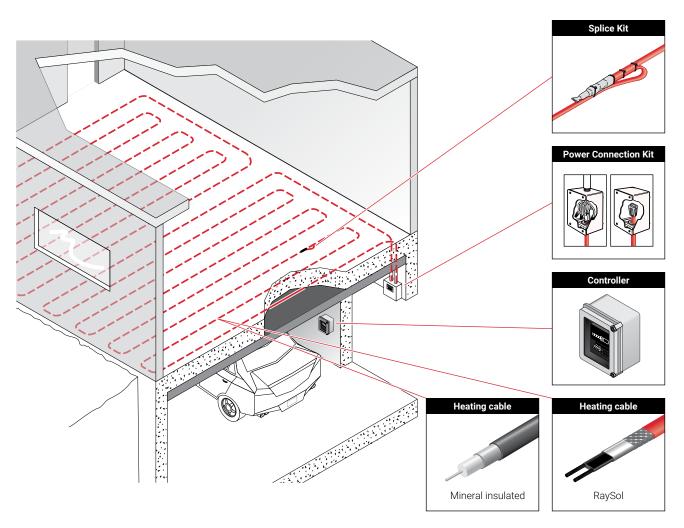
RAYCHEM RaySol and MI heating cables can be used to eliminate the chill felt from the heat lost through floors over non-heated areas such as garages, loading docks or arcades. The heating cables achieve this by replacing the heat normally lost through the floor insulation over a cold space.

For heat loss replacement, both RaySol and MI heating cables can be used and are attached to the bottom of the concrete floor.

COMFORT FLOOR HEATING

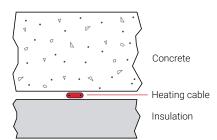
RAYCHEM RaySol and MI heating cables can heat floors in places such as lobbies, foyers and gymnasiums. The heating cables are used to raise the floor temperature to 80°F (27°C) or warmer so it is comfortable to walk on the floor in bare feet.

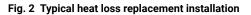
For comfort floor heating, both RaySol and MI heating cables can be used and can be embedded in mortar or concrete.

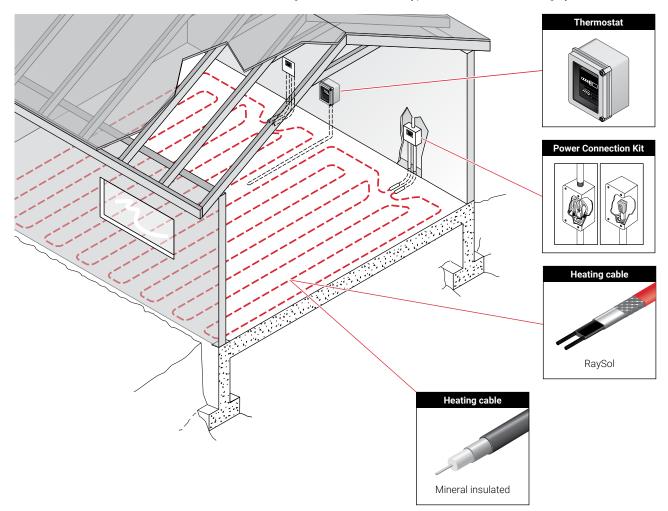

RADIANT SPACE HEATING

RaySol and MI heating cable systems can be designed to provide primary space heating for rooms with concrete floors. RaySol heating cable systems must be custom designed through nVent. Contact your nVent representative or call (800) 545-6258 for design assistance.

For radiant space heating, both RaySol and MI heating cables can be used and are directly embedded in mortar or concrete.


Typical System


The following illustration shows a typical heat loss replacement system.


Fig. 1 Typical heat loss replacement system

The following illustration shows a typical heat loss replacement installation.

The following illustration shows a typical comfort floor heating system.

Fig. 3 Typical comfort floor heating system

The following illustration shows a typical comfort floor system installation.

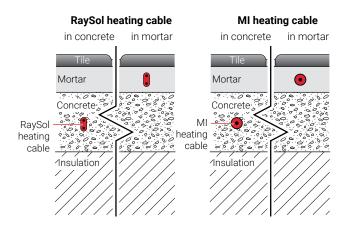


Fig. 4 Typical comfort floor heating system installation

A radiant space heating system is similar to the illustration in Fig. 3. RaySol heating cable systems must be custom designed through nVent. Contact your nVent representative or call (800) 545-6258 for design assistance.

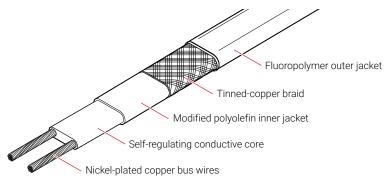

Table 1 summarizes which heating cable can be used for which application.

TABLE 1FLOOR HEATING APPLICATIONS AND RECOMMENDEDHEATING CABLES

Application	RaySol	МІ	
Heat loss replacement	Х	Х	
Comfort floor heating	Х	Х	
Radiant space heating	Х	Х	

Self-Regulating Heating Cable Construction

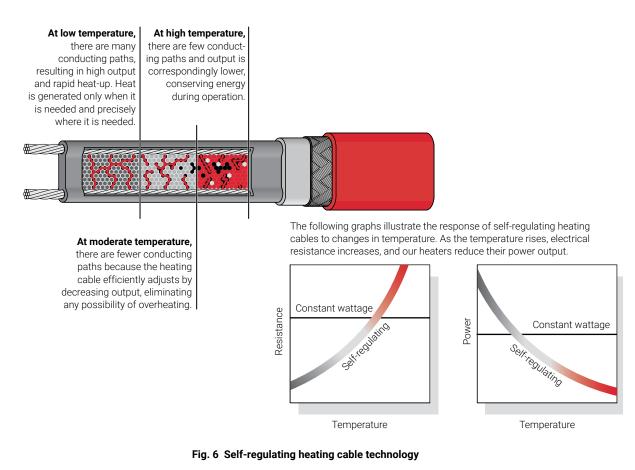

RAYCHEM RaySol self-regulating heating cables are comprised of two parallel nickel-coated bus wires in a cross-linked polymer core, a tinned copper braid, and a fluoropolymer outer jacket. These cables are cut to length, simplifying the application design and installation.

Fig. 5 Typical RaySol heating cable construction

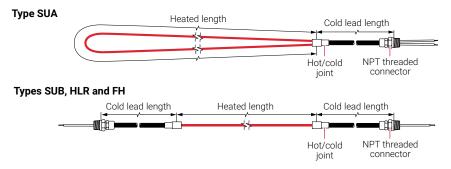
With self-regulating technology, the number of electrical paths between bus wires changes in response to temperature fluctuations. As the temperature surrounding the heater decreases, the conductive core contracts microscopically. This contraction decreases electrical resistance and creates numerous electrical paths between the bus wires. Current flows across these paths to warm the core.

As the temperature rises, the core expands microscopically. This expansion increases electrical resistance and the number of electrical paths decreases. The heating cable automatically reduces its output.

CODES AND APPROVALS

The RaySol system is UL Listed for heat loss replacement, comfort floor heating and radiant space heating applications.

The RaySol system is CSA Certified for comfort floor heating and radiant space heating applications. For heat loss replacement applications where the cable is attached to the bottom of the concrete floor, contact nVent for additional information.


MI Heating Cable Construction

RAYCHEM MI heating cables used for floor heating applications are comprised of a single conductor surrounded by magnesium oxide insulation and a solid copper sheath. For embedded applications, such as comfort floor heating and radiant space heating, the heating cable also has an extruded Low Smoke Zero Halogen (LSZH) jacket..

Fig. 7 Typical MI heating cable construction

The heating cables are supplied as complete factory-fabricated assemblies consisting of an MI heating cable that is joined to a section of MI non-heating cold lead and terminated with NPT connectors. Two configurations are available: Type SUA consisting of a looped cable joined to a single 7 ft (2.1 m) cold lead with one 1/2-in NPT connector; and Types SUB, HLR and FH consisting of a single run of cable with a 15 ft (4.6 m) cold lead and a 1/2-in NPT connector on each end.

Fig. 8 Configurations for surface mount or directly embedded in concrete installations

nVent offers all the components necessary for system installation. Details of these components and additional accessories can be found later in this design guide.

CODES AND APPROVALS

The MI system is c-CSA-us Certified for comfort floor heating and radiant space heating applications. For heat loss replacement applications where the cable is attached to the bottom of the concrete floor, contact nVent for additional information.

FLOOR HEATING APPLICATION DESIGN

This section guides you through the steps necessary to design the correct system for your application. The examples provided in each step are intended to incrementally illustrate the project parameter output for sample designs from start to finish. As you go through each step, use the appropriate design worksheets to document your project parameters, so that by the end of this section, you will have the information you need for your Bill of Materials.

For products and applications not covered by this design guide, please contact your nVent representative or call nVent directly at (800) 545-6258.

Design Step by Step

Your system design requires the following essential steps:

- **1** Determine the application
 - Heat loss replacement
 - Comfort floor heating
 - Radiant space heating
- 2 Select the heating cable system and installation method
 - Heat loss replacement
 - Comfort floor heating
 - Radiant space heating
- 3 Determine the floor configuration
- Determine the heating cable spacing, layout, and length
 - RaySol heating cables
 - MI heating cables
- 5 Determine the electrical parameters
- 6 Select the connection kits and accessories
- **7** Select the control system
- 8 Select the power distribution
- 9 Complete the Bill of Materials

Depending on the heating cable system you select, use one of the following worksheets to help you document the project parameters you will need for your project's Bill of Materials:

- Preliminary worksheet for determining your project's application and product line on page 316.
- The "RaySol Heating Cable Floor Heating Design Worksheet" on page 317.
- The "MI Heating Cable Floor Heating Design Worksheet" on page 325.

Fle	oor Heating System Design Steps	ę
1.	Determine the application	
2.	Select the heating cable system and installation method	
3.	Determine the floor configuration	
4.	Determine the heating cable spacing, layout and length	
5.	Determine the electrical parameters	
6.	Select the connection kits and accessories	
7.	Select the control system	
8.	Select the power distribution	
9.	Complete the Bill of Materials	

ep 🚺 Determine the application

This step further defines the specific application and design assumptions. Once the application is verified, you will select the appropriate heating system in Step 2.

HEAT LOSS REPLACEMENT

A heat loss replacement system uses RaySol and MI heating cables for concrete floors built over garages, loading docks, arcades, or other cold spaces. The design goal is to prevent the floor over a cold space from cooling below room temperature. The heating cable system achieves this by replacing the heat normally lost through the floor insulation over a cold space.

A successful design must conform to the following requirements:

- The floor to be heated is indoors where the room temperature above the floor is approximately 70°F (21°C).
- RaySol and MI heating cables will be attached to the bottom of the concrete floor. If it is necessary to install RaySol or MI cables in conduit or to directly embed the MI cables in the concrete floor, contact your nVent representative or call (800) 545-6258 for design assistance.
- The bottom of the floor is insulated.

COMFORT FLOOR HEATING

A comfort floor heating system uses RaySol or MI heating cables for lobbies, foyers, schools, or gymnasiums. The design goal is to raise the floor temperature to 80°F (27°C) or above so it is comfortable to walk on the floor with bare feet. RaySol and LSZH jacketed copper sheathed MI heating cables are directly embedded in mortar or concrete.

A successful design must conform to the following requirements:

- For RaySol, the floor to be heated is indoors, and is located on grade or is located above an area where the ambient temperature is approximately 70°F (21°C) or the bottom of the floor is insulated.
- For MI, the floor to be heated is indoors, and is located on grade or is located above an area where the ambient temperature is approximately 70°F (21°C) or the bottom of the floor is insulated with minimum R-20 insulation when exposed to the outside ambient air temperature.
- RaySol and LSZH jacketed copper sheathed MI heating cables are embedded in a standard concrete floor or embedded in a mortar layer (at least 3/4 in (2 cm) thick) under ceramic tile or natural stone.
- RaySol or MI heating cables shall <u>not</u> be installed in shower floors, under tubs and spas, or under other permanent fixtures.

RADIANT SPACE HEATING

RaySol and MI heating cable systems can be designed to provide primary space heating for rooms with concrete floors. RaySol heating cable systems must be custom designed by nVent. Contact your nVent representative or call (800) 545-6258 for design assistance.

A successful design must conform to the following requirements:

- The Btu requirement and total heated area are provided by the customer.
- The bottom of the floor is insulated or located on grade.
- RaySol and LSZH jacketed copper sheathed MI heating cables are embedded in a concrete floor or embedded in mortar (at least 3/4 in (2 cm) thick), under ceramic tile or natural stone.
- RaySol or MI heating cables shall <u>not</u> be installed in shower floors, under tubs and spas, or under other permanent fixtures.

Floor Heating System Design Steps 1. Determine the application 2. Select the heating cable system and installation method З. Determine the floo configuration 4 Determine the heating cable spacing layout and length 5. Determine the electrical parameters 6. Select the connection kits and accessories 7. Select the control system 8. Select the power distribution Complete the Bill 9. of Materials

Flo	oor Heating System Design Steps
1.	Determine the application
2.	Select the heating cable system and installation method
3.	Determine the floor configuration
4.	Determine the heating cable spacing, layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill

of Materials

Step **2** Select the heating cable system and installation method

In this step you will determine the heating cable system and installation method to suit your specific needs. Table 2 indicates the various installation methods that will be discussed in this design guide for each heating cable technology as it pertains to each application.

TABLE 2INSTALLATION METHODS BY HEATING CABLE ANDAPPLICATION

	Heat loss replacement		Comfort heating	floor	Radiant s heating	space
Installation method	RaySol	MI	RaySol	MI	RaySol	МІ
Attach to bottom	х	х	_	_	-	-
Embed in concrete	-	-	х	х	х	х
Embed in mortar bed	_	-	х	Х	Х	х

Step 🖸 Determine the floor configuration

All floor heating applications require determining the area to be heated. For heat loss replacement and comfort floor heating you will also need the minimum ambient design temperature and the insulation R-value. For radiant space heating you will need to provide the Btu requirement.

In this design guide, two floor layouts will be used to illustrate all floor heating applications. The first example will be for heat loss replacement and the second example will be for comfort floor heating and radiant space heating.

HEAT LOSS REPLACEMENT

GATHERING INFORMATION

When using this guide to design a system, you need the following information:

- · Size and layout of exposed floor
- · Minimum ambient design temperature
- Insulation R-value
- Supply voltage and phase
- · Control requirements

PREPARE SCALE DRAWING

Draw to scale the floor area to be heated. Carefully note the limits of the area to be heated. Show all concrete joints on the drawing and note the voltage supply location, and location and size of obstacles, such as floor drains, pipe penetrations, conduit runs, columns and fixtures.

For heat loss replacement, the entire floor is considered the area to be heated.

Heated area = Total area

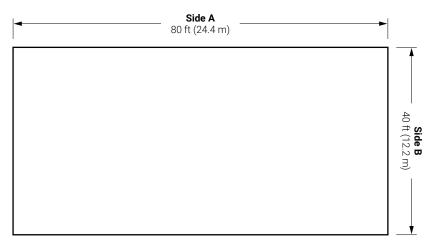


Fig. 9 Floor layout for heat loss replacement example

DETERMINE MINIMUM AMBIENT DESIGN TEMPERATURE

Determine the lowest temperature that is expected below the floor insulation.

RECORD INSULATION R-VALUE

The insulation R-value is the thermal resistance of the floor's insulation. Normally, the R-value will be printed on the insulation material. If that is not the case, you can calculate it by dividing the insulation thickness in inches by the insulation thermal conductivity.

Example: RaySol heating cables for heat loss replacement

Heated area	80 ft x 40 ft = 3200 ft ² (see Fig. 9)
	(24.4 m x 12.2 m = 297.4 m ²)
Minimum ambient design temperature	-10°F (-23°C)
Insulation R-value	R-20 (20 ft ^{2.} °F·hr/Btu)
Supply voltage and phase	208 V, single-phase
Control requirements	Electronic thermostat, monitoring requested

Example: MI heating cables for heat loss replacement

Heated area

Minimum ambient design temperature Insulation R-value Supply voltage and phase Control requirements

Advance to Step 4, page 282.

80 ft x 40 ft = 3200 ft² (see Fig. 9) (24.4 m x 12.2 m = 297.4 m²) -10°F (-23°C) R-20 (20 ft^{2.}°F·hr/Btu) 208 V, three-phase Electronic thermostat, monitoring requested

COMFORT FLOOR HEATING

GATHERING INFORMATION

When using this guide to design a system you need the following information:

- · Size and layout of floor
- · Minimum ambient design temperature
- Insulation R-value
- · Supply voltage and phase
- Control requirements

For comfort floor heating, it is also important to note the locations of shower floors, tubs, spas, toilets, and other permanent fixtures and subtract these areas from the total area.

Heated area = Total area - Permanent fixture space

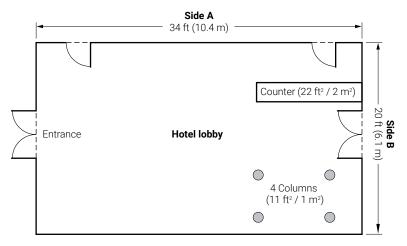


Fig. 10 Floor layout for comfort floor heating example

DETERMINE MINIMUM AMBIENT DESIGN TEMPERATURE

Determine the lowest temperature that is expected below the floor insulation.

RECORD INSULATION R-VALUE

The insulation R-value is the thermal resistance of the floor's insulation. Normally, the R-value will be printed on the insulation material. If that is not the case, you can calculate it by dividing the insulation thickness in inches by the insulation thermal conductivity.

Example: Comfort floor heating (RaySol and MI heating cables)

Heated area	$(34 \text{ ft x } 20 \text{ ft}) - (22 \text{ ft}^2 + 11 \text{ ft}^2) = 647 \text{ ft}^2$ (see Fig. 10) $(10.4 \text{ m x } 6.1 \text{ m}) - (2 \text{ m}^2 + 1 \text{ m}^2) = 60.4 \text{ m}^2$			
Minimum ambient design temperature	10°F (-12°C)			
Insulation R-value	R-30 (30 ft ^{2.} °F·hr/Btu)			
Supply voltage and phase	208 V, single-phase			
Control requirements	Electronic thermostat			
Advance to Step 4, page 282.				

RADIANT SPACE HEATING

GATHERING INFORMATION

When using this guide to design a system, you need the following information:

- · Size and layout of floor
- The Btu requirement (heat loss) calculated by the engineer or architect
- Supply voltage and phase
- Control requirements

For radiant space heating, the heat loss, or Btu required, is based on the total area of the room. However, the heating cable must not be installed under the area occupied by columns, fixtures, shower floors, tubs and spas, toilets and other permanent fixtures. To determine the area in which the heating cable will be installed, subtract the area occupied by these permanent fixtures from the total area.

Heated area = Total area – Permanent fixture space

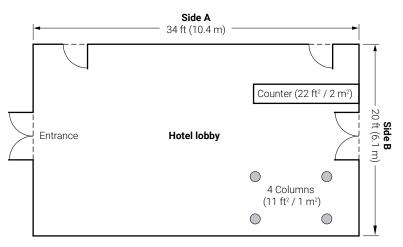


Fig. 11 Floor layout for radiant space heating example

Example: MI heating cables for radiant space heating				
Floor area	(34 ft x 20 ft) – (22 ft ² + 11 ft ²) = 647 ft ² (see Fig. 11)			
	(10.4 m x 6.1 m) – (2 m ² + 1 m ²) = 60.4 m ²			
Btu requirement	34,800 Btu / hr (supplied by engineer)			
Supply voltage and phase	208 V, single-phase			
Control requirements	Electronic thermostat			
Advance to Step 4, page 282.				

Floor Heating System Design Steps

1.	application
2.	Select the heating cable system and installation method

- 3. Determine the floo configuration
- 4. Determine the heating cable spacing, layout and length
- 5. Determine the electrical parameters
- 6. Select the connection kits
- and accessories7. Select the control
- system
- 8. Select the power distribution
- 9. Complete the Bill
- of Materials

Step 4 Determine the heating cable spacing, layout and length

In this step you will select the heating cable and determine the spacing, layout and length. This section is organized by heating cable type with specific design criteria for each application and installation method.

- · For RaySol self-regulating heating cable design
 - For heat loss replacement, see below.
 - For comfort floor heating, see page 286.
- For MI heating cable design
 - For heat loss replacement, see page 291.
 - For comfort floor heating, see page 280.
 - For radiant space heating, see page 300.

RAYSOL SELF-REGULATING HEATING CABLE SYSTEM DESIGN

HEAT LOSS REPLACEMENT

Design a RaySol heating cable system for heat loss replacement as follows:

1. Select the appropriate RaySol heating cable

Select the heating cable based on the operating voltage. For 120 V, select RaySol-1; for 208-277 V, select RaySol-2.

TABLE 3 RAYSOL HEATING CABLE

Supply voltage	Catalog number
120 V	RaySol-1
208-277 V	RaySol-2

Example: RaySol heating cables for heat loss replacement

Supply voltage	208 V (from Step 3)
Catalog number	RaySol-2

2. Determine the RaySol heating cable spacing

Use the minimum ambient design temperature and the floor insulation R-value (from Step 3) to select the correct spacing shown in Table 4 for heat loss replacement. If the calculated R-value or minimum design temperature does not match the values in the table, use the values that give the closer spacing.

TABLE 4RAYSOL HEATING CABLE SPACING FOR HEAT LOSSREPLACEMENT

Minimum ambient design temperature		Floor insulation R-value (ft ^{2.°} F·hr/Btu)					
		R-10 R-20		R-30 R-40			
50°F	(10°C)	30 in (73 cm)	36 in (91 cm)	36 in (91 cm)	36 in (91 cm)		
30°F	(-1°C)	24 in (61 cm)	30 in (76 cm)	36 in (91 cm)	36 in (91 cm)		
10°F	(-12°C)	21 in (53 cm)	30 in (76 cm)	30 in (76 cm)	36 in (91 cm)		
-10°F	(-23°C)	18 in (46 cm)	24 in (61 cm)	30 in (76 cm)	36 in (91 cm)		
-30°F	(-34°C)	15 in (38 cm)	24 in (61 cm)	30 in (76 cm)	36 in (91 cm)		

If the space below the floor is maintained at 50–70°F (10–21°C), insulate the floor to R-10 minimum and select a heating cable spacing from the 50°F (10°C) row in Table 4.

Example: RaySol heating cables for heat loss replacement

Minimum ambient design temperature

Insulation R-value R-20 (from Step 3)

Heating cable spacing

24 in (61 cm)

-10°F (-23°C) (from Step 3)

3. Determine the RaySol heating cable layout and length

Estimate the heating cable length The length of heating cable and the number of heating cable circuits can be estimated before a detailed layout is done if the heating cable spacing, total heated area, and the available branch circuit breaker rating are known. Fig. 12 shows typical layouts when the heating cable is directly attached to the bottom of the floor.

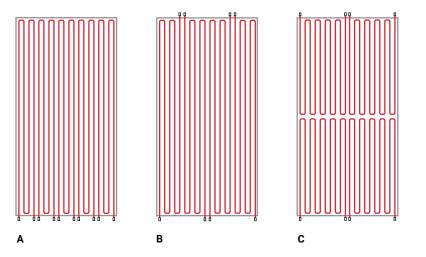
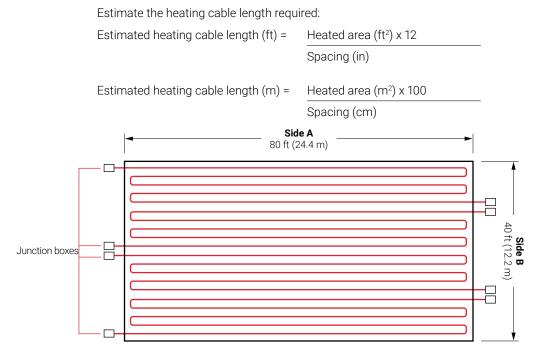



Fig. 12 Typical heating cable layouts for heat loss replacement

Fig. 13 RaySol heating cable layout for heat loss replacement

Example: RaySol heating cable length for heat loss replacement

Heated area	3200 ft ² (297.4 m ²) (from Step 3, Fig. 9)
Estimated heating cable length	3200 ft ² x 12 / 24 in = 1600 ft
	297.4 m ² x 100 / 61 cm = 487.5 m

4. Determine the maximum circuit length for the heating cable length

For the appropriate supply voltage, use Table 5 to select the maximum circuit length which is closest to, but greater than the length calculated. If the estimated heating cable length required is greater than the maximum circuit length, multiple circuits must be used.

TABLE 5 MAXIMUM RAYSOL CIRCUIT LENGTH IN FEET (METERS) WHEN ATTACHING HEATING CABLE TO THE BOTTOM OF THE FLOOR (40°F (4°C) START-UP)*

Supply voltage	120 V		208 V	1	240 V		277 V	
Circuit breaker size (A)	ft	m	ft	m	ft	m	ft	m
15	120	36.6	205	62.5	210	64.0	215	65.5
20	160	48.8	275	83.8	285	86.9	290	88.4
30	240	73.2	410	125.0	425	129.5	430	131.1
40	240	73.2	410	125.0	425	129.5	430	131.1

*For start-up temperatures less than 40°F (4°C), contact your nVent representative.

Calculate the estimated number of circuits as follows:

Number of circuits = Estimated heating cable length (ft/m)

Maximum circuit length (ft/m)

Round the number of circuits to the next larger whole number.

Example: RaySol heating cable length for heat loss replacement

Power supply	Four 30 A circuit breakers (from Table 5)
Number of circuits	1600 ft / 410 ft = 4 circuits (rounded)
Maximum circuit length	410 ft (125 m) (from Table 5)
Supply voltage	208 V (from Step 3)
Estimated heating cable length	1600 ft (487.5 m) (from earlier in this step)

5. Determine the additional heating cable allowance

Additional heating cable is required to make power connections and to route the circuits to junction boxes. This extra heating cable need not be considered when determining the maximum heating cable length for circuit breaker sizing. In order to estimate the total heating cable length, you will need to take the estimated heating cable length you already calculated, and then add heating cable allowances, as follows:

Estimated total heating cable length = Estimated heating cable length + End allowances + Connection kit allowances

TABLE 6 RAYSOL ADDITIONAL HEATING CABLE ALLOWANCE

Heating cable allowance	Description	Length of cable
End allowances	From end of protective conduit to junction box	4 ft (1 m) per end
Connection kit allowances	Required to assemble the connection kit (one per circuit)	4 ft (1 m) per kit

Example: RaySol heating cable for heat loss replacement

Estimated heating cable length	1600 ft (487 m) (from earlier in this step)
End allowance	4 circuits x 4 ft per end x 2 ends = 32 ft (10 m) (from Table 6)
Connection kit allowances	4 connection kits x 4 ft per kit = 16 ft (5 m) (from Table 6)
Total heating cable allowances	32 ft (10 m) + 16 ft (5 m) = 48 ft (15 m)
Estimated total heating cable length	1600 ft (487 m) + 48 ft (15 m) = 1648 ft (502 m)

6. Locate the junction boxes for the RaySol heating cable system

The heating cable connects to the branch circuit wiring in a junction box with the RaySol FTC-P power connection and end seal kit.

The junction boxes may be distributed around the area to be heated, or collected at a single location. In many applications, the heating cable can be laid out so that all power connections and end seals can be grouped in a common area without using extra heating cable. If this can be done, select the common junction box location to minimize the electrical conduit and wire needed to reach the branch circuit breakers. Refer to Fig. 12 on page 283 for examples of typical layouts of cable attached to the bottom of concrete floors.

7. Lay out the heating cable runs, circuits, and junction boxes

After determining the estimated total heating cable length, the number of circuits, and the junction box location, do a trial layout. In making the trial layout, follow these recommendations:

- Start and end each circuit in a junction box. The power connection and end seal may be located in the same box or in different boxes.
- Arrange the heating cable run so it uniformly covers the area to be heated.
- Maintain the design heating cable spacing within 1 in (2.5 cm).
- Do not route the heating cable closer than 4 in (10 cm) to the edge of the subfloor, drains, anchors, or other material in the concrete.

- Do not exceed the maximum length of heating cable allowed on a branch circuit breaker as given in Table 5.
- When the combined lengths of two or more circuit runs are less than the maximum circuit length allowed, these runs can be combined in parallel on one circuit breaker.

8. Record the circuit information

Reconfigure the trial circuit layout until the design meets all of the previous recommendations. Assign each circuit to a circuit breaker in a specific panel board and record each circuit length.

Advance to Step 5, page 303.

COMFORT FLOOR HEATING

Design a RaySol heating cable system for comfort floor heating as follows:

1. Select the appropriate RaySol heating cable

Select the heating cable based on the operating voltage (see Table on page 282). For 120 V, select RaySol-1; for 208–277 V, select RaySol-2.

Example: RaySol heating cables for comfort floor heating

Catalog number	RaySol-2
Supply voltage	208 V (from Step 3)

2. Determine the RaySol heating cable spacing

Use the minimum ambient design temperature and the floor insulation R-value (from Step 3) to select the correct spacing shown in Table 7 for comfort floor heating. If the calculated R-value or minimum design temperature does not match the values in the table, use the values that give the closer spacing.

TABLE 7RAYSOL HEATING CABLE SPACING FOR COMFORTFLOOR HEATING

Minimum ambient		Floor insulation	Floor insulation R-value (ft ^{2.°} F·hr/Btu)				
	emperature	R-10	R-20	R-30	R-40		
50°F	(10°C)	8 in (20 cm)	9 in (23 cm)	9 in (23 cm)	9 in (23 cm)		
30°F	(-1°C)	7 in (18 cm)	8 in (20 cm)	8 in (20 cm)	8 in (20 cm)		
10°F	(-12°C)	7 in (18 cm)	7 in (18 cm)	8 in (20 cm)	8 in (20 cm)		
-10°F	(-23°C)	6 in (15 cm)	7 in (18 cm)	7 in (18 cm)	8 in (20 cm)		
-30°F	(-34°C)	6 in (15 cm)	7 in (18 cm)	7 in (18 cm)	7 in (18 cm)		

For on-grade installations use heating cable on 9 in (23 cm) centers.

If the space below the floor is maintained at more than 50°F (10°C), insulate the floor to R-10 minimum and select heating cable spacing from the 50°F (10°C) row in Table 7.

Example: RaySol heating cables for comfort floor heating

Minimum ambient design temperature	10°F (-23°C) (from Step 3)
Insulation R-value	R-30 (from Step 3)
Heating cable spacing	8 in (20 cm)

3. Determine the RaySol heating cable layout and length

Estimate the heating cable length The length of heating cable and the number of heating cable circuits can be estimated before a detailed layout is done if the heating cable spacing, total heated area, and the available branch circuit breaker rating are known.

Estimate the heating cable length required:

Estimated heating cable length (ft) =	Heated area (ft²) x 12
S	Spacing (in)
	Heated area (m²) x 100 Spacing (cm)
Side A	
◄ 34 ft (10.4 m	n)
	Side B 20 ft (6, 1 m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 14 RaySol heating cable layout for comfort floor heating

Example: RaySol heating cable length for comfort floor heating

Heated area	647 ft ² (60.4 m ²) (from Step 3)
Estimated heating cable length	647 ft ² x 12 / 8 in = 971 ft
	60.4 m ² x 100 / 20 cm = 302 m

4. Determine the maximum circuit length for the heating cable length and layout

For the appropriate supply voltage, use Table 8 to select the maximum circuit length which is closest to, but greater than the length calculated. If the estimated heating cable length required is greater than the maximum circuit length, multiple circuits must be used.

TABLE 8 MAXIMUM RAYSOL CIRCUIT LENGTH IN FEET (METERS) WHEN

EMBEDDED IN CONCRETE OR MORTAR (40°F (4°C) START-UP)* Supply voltage 120 V 208 V 240 V 277 V **Circuit breaker size** ft ft (A) ft ft 15 80 24.4 41.1 42.7 145 44.2 135 140 20 105 32.0 185 56.4 185 56.4 195 59.4 30 48.8 88.4 160 275 83.8 280 85.3 290 360 40 170 51.8 280 85.3 320 97.5 109.7

* For start-up temperatures less than 40°F, contact your nVent representative.

Note: If RaySol is installed in a bathroom, a 5 mA GFCI breaker must be used. In this case, the circuit breaker size cannot exceed 30 A.

Calculate the estimated number of circuits as follows:

Number of circuits =	Estimated heating cable length (ft/m)					
-	Maximum circuit length (ft/m)					

Round the number of circuits to the next larger whole number.

Example: RaySol heating cable length for comfort floor heating

Estimated heating cable length	971 ft (302 m) (from earlier in this step)
Supply voltage	208 V (Step 3)
Maximum circuit length	275 ft (83.8 m) (from Table 8)
Number of circuits	971 ft / 275 ft (302 m / 83.8 m)
	= 4 circuits (rounded)
Power supply	Four 30 A circuit breakers (from Table 8)

5. Determine the additional heating cable allowances

Additional heating cable is required to make power connections and to route the circuits to junction boxes. This extra heating cable shall not be considered when determining the maximum heating cable length for circuit breaker sizing. In order to estimate the total heating cable length, you will need to take the estimated heating cable length you already calculated, and then add heating cable allowances, as follows:

Estimated total heating cable length = Estimated heating cable length + End allowances + Connection kit allowances

Refer to Table 6 on page 285 to calculate the additional RaySol heating cable allowances.

Example: RaySol heating cable for comfort floor heating

Estimated heating cable length	971 ft (302 m) (from earlier in this step)
End allowance	4 circuits x 4 ft per end x 2 ends = 32 ft (10 m) (from Table 6)
Connection kit allowances	4 connection kits x 4 ft per end = 16 ft (5 m) (from Table 6)
Total heating cable allowances	32 ft (10 m) + 16 ft (5 m) = 48 ft (15 m)
Estimated total heating cable length	971 ft (302 m) + 48 ft (15 m) = 1019 ft (317 m)

6. Locate the junction boxes for RaySol heating cable system

The heating cable connects to the branch circuit wiring in a junction box with the RaySol FTC-XC power connection and end seal kit.

The junction boxes may be distributed around the area to be heated, or collected at a single location. In many applications the heating cable can be laid out so that all power connections and end seals can be grouped in a common area without using extra heating cable. If this can be done, select the common junction box location to minimize the electrical conduit and wire needed to reach the branch circuit breakers. Typical heating cable layout for comfort floor heating is similar to the examples shown in Fig. 13 on page 284 for heat loss replacement.

Fig. 15 illustrates the proper method to route the RaySol heating cable from the mortar bed up to the junction box using protective conduit.

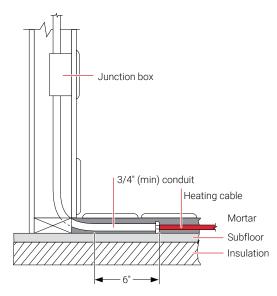


Fig. 15 Typical RaySol comfort floor heating installation

7. Lay out heating cable runs, circuits, and junction boxes

After determining the approximate total length of heating cable, the number of circuits, and the junction box location, do a trial layout. In making the trial layout, follow these recommendations:

- Start and end each circuit in a junction box. The power connection and end seal may be located in the same box or in different boxes.
- Arrange the heating cable run so it uniformly covers the area to be heated.
- Maintain the design heating cable spacing within 1 in (2.5 cm).
- Do not extend the heating cable beyond the room or area in which it originates.
- Do not install cables under shower floors, tubs and spas, toilets and other permanent fixtures.
- Do not cross expansion, crack control, or other subfloor joints.
- Do not route the heating cable closer than 4 in (10 cm) to the edge of the subfloor, drains, anchors, or other material in the concrete.
- Do not exceed the maximum length of heating cable allowed on a branch circuit breaker as given in Table 8.
- When the combined lengths of two or more circuit runs are less than the maximum circuit length allowed, these runs can be combined in parallel on one circuit breaker.

8. Record the circuit information

Reconfigure the trial circuit layout until the design meets all of the previous recommendations. Assign each circuit to a circuit breaker in a specific panel board and record each circuit length.

Advance to Step 5, page 303.

MI HEATING CABLE SYSTEM DESIGN

A single heating cable may be sufficient for small floor areas. For large floor areas, it may be necessary to divide the area into two or more equal subsections (Fig. 17 on page 296). For a three-phase voltage supply, divide the total area into three equal subsections (Fig. 16 on page 293) or a multiple of three equal subsections when more than one circuit is necessary. If expansion joints will be used in the floor, divide the area so that the heating cables will not cross any expansion joints.

Designing the floor heating system using a three-phase voltage supply has the added advantages of fewer circuits, reduced distribution costs, and a balanced heating system load and is recommended for large areas.

Three-phase voltage supplies include 208/120 V, 480/277 V, and 600/347 V. The heating cables may be connected in delta or wye configuration as shown in Fig. 20 on page 312 and Fig. 21 on page 313. If the heating cables are connected in the delta configuration, select the cables based on the phase-to-phase voltage (example: select 208 V cables for a 208 V supply). If the heating cables are connected in the wye configuration, select the cables based on the phase-to-neutral voltage (example: select 120 V cables for a 208 V supply).

HEAT LOSS REPLACEMENT

SELECT THE HEATING CABLE

Table 9 lists the heat loss for minimum design temperature and insulation R-value determined in Step 3. Select your design power from this table. If your calculated R-value or minimum design temperature does not match the values in the table, use the values that give the higher design power.

TABLE 9DESIGN POWER BASED ON 70°F (21°C) CONTROL

		Floor insulation R-value (ft ^{2, °} F·hr/Btu)								
Minimum	desian	R-10		R-20		R-30			R-40	
temperatu				Des	ign powei	r - W/ft	² (W/m ²)			
30°F	(-1°C)	2.2	(23.7)	1.6	(17.2)	1.4	(15.1)	1.3	(14.0)	
20°F	(-7°C)	2.5	(26.9)	1.8	(19.4)	1.5	(16.1)	1.4	(15.1)	
10°F	(-12°C)	2.8	(30.1)	1.9	(20.4)	1.6	(17.2)	1.5	(16.1)	
0°F	(-18°C)	3.0	(32.3)	2.0	(21.5)	1.7	(18.3)	1.5	(16.1)	
-10°F	(-23°C)	3.3	(35.5)	2.2	(23.7)	1.8	(19.4)	1.6	(17.2)	
-20°F	(-29°C)	3.6	(38.7)	2.3	(24.7)	1.9	(20.4)	1.7	(18.3)	
-30°F	(-34°C)	3.9	(42.0)	2.5	(26.9)	2.0	(21.5)	1.7	(18.3)	
-40°F	(-40°C)	4.1	(44.1)	2.6	(28.0)	2.1	(22.6)	1.8	(19.4)	

The heating cables shown in Table 10 have been optimized for heat loss replacement applications. They are manufactured with a bare copper sheath and are designed to be attached to the bottom of the concrete floor. Do not use these heating cables for embedded applications. If assistance is required to select heating cables for embedded heat loss replacement applications, irregular shaped areas, or applications outside the scope of this design guide, contact your nVent representative or call (800) 545-6258 for design assistance.

Single-phase supply

Small floor areas require only one heating cable. Large floor areas may require two or more heating cables.

- Divide large floor areas into equal subsection areas, if possible (see Fig. 17 on page 296).
- Calculate the power required for the total area (small floor areas) or for each subsection area (large floor areas) by multiplying the design power (from Table 9) by the total area or subsection area.

Power required = Design power x Total area (or Subsection area)

Simply select the heating cable from Table 10 on page 294 based on the total area or subsection area. Under the appropriate voltage, make sure that the total area or subsection area falls within the minimum and maximum range of the "Area coverage" columns and verify that the "Cable wattage" shown directly across from the "Area coverage" is equal to or higher than the calculated "Power required" for the total area or subsection area.

In cases where the floor area has been divided into equal subsections, select the appropriate number of heating cables.

Note: Several heating cables in Table 10 may satisfy the requirements. Selecting one cable over another will simply result in a higher or lower watt density or different cable spacing. It may be desirable to select the lowest wattage cable that satisfies the area coverage to reduce the breaker size, or a longer cable to reduce cable spacing. Reduced cable spacing will provide a more uniform floor temperature.

Three-phase supply

Since a balanced three-phase system requires three cables, each cable will occupy 1/3 of the floor area when installed.

- Divide the total heated floor area into three equal subsections (Fig. 16) or a multiple of three equal subsections when more than one circuit is necessary.
- Calculate the power required for each subsection by multiplying the design power (from Table 9) by the subsection area.

Power required = Design power x Subsection area

Simply select the heating cable from Table 10 on page 294 based on the subsection area. Under the appropriate voltage, make sure that the subsection area falls within the minimum and maximum range of the "Area coverage" column and verify that the "Cable wattage" shown directly across from the "Area coverage" is equal to or higher than the calculated "Power required" for the subsection area.

Select the appropriate number of heating cables equal to the number of subsection areas (multiples of three cables required).

Note: Several heating cables in Table 10 may satisfy the requirements. Selecting one cable over another will simply result in a higher or lower watt density or different cable spacing. It may be desirable to select the lowest wattage cable that satisfies the area coverage to reduce the breaker size, or a longer cable to reduce cable spacing. Reduced cable spacing will provide a more uniform floor temperature.

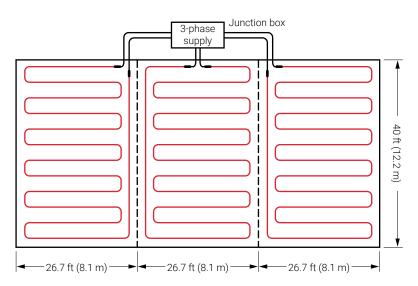


Fig. 16 Typical three-phase heating cable layout for heat loss replacement

Example: MI heating cables for heat loss replacement

Heated area	3200 ft ² (297.4 m ²) (from Step 3)
Supply voltage and phase	208 V, three-phase (from Step 3)
Minimum ambient design temperature	e –10°F (–23°C) (from Step 3)
Insulation R-value	R-20 (20 ft ^{2.} °F·hr/Btu) (from Step 3)
Design power	2.2 W/ft² (23.7 W/m²) (from Table 9)
Subsection area	3200 ft ² / 3 = 1067 ft ² (see Fig. 16)
	297.4 m ² / 3 = 99.1 m ²
Power required (for each subsection)	(Design power x Subsection area) =
	2.2 W/ft ² x 1067 ft ² = 2347 W
	23.7 W/m ² x 99.1 m ² = 2347 W
Heating cable catalog number	HLR24 (from Table 10)
Cable wattage	5150 W (from Table 10)
Cable voltage	208 V (for cables connected in Delta configuration)
Heating cable length	420 ft (128.0 m) (from Table 10)
Number of cables	3 (one cable required for each subsection)

TABLE 10 SELECTION TABLE FOR HEAT LOSS REPLACEMENT

Min number Min (ft') Max (ft') Min (m') Max (m') Cable wattage (W) (ft) Meating cable (A) H20 V and 228 V, three-phase Wye		
120 V and 208 V, three-phase Wye Image: Stress of the stress	current	
HLR1 56 88 5 8 330 70 21.3 2.8 HLR2 89 132 8 12 540 44 13.4 4.5 HLR3 112 165 10 15 670 55 16.8 5.6 HLR4 127 189 12 18 760 63 19.2 6.3 HLR5 156 231 14 21 935 77 23.5 7.8 HLR6 180 267 17 25 1080 89 2.11 9.0 HLR7 216 318 20 30 1295 106 32.3 10.8 HLR4 246 366 23 34 1475 122 37.2 12.3 HLR9 286 420 27 39 1715 140 42.7 14.3 HLR10 349 516 32 48 2100 172 52.4 <th></th>		
HLR2 89 132 8 12 540 44 13.4 4.5 HLR3 112 165 10 15 670 55 16.8 56 HLR4 127 189 12 18 760 63 19.2 63 HLR5 156 231 14 21 935 77 23.5 7.8 HLR6 180 267 17 25 1080 89 27.1 9.0 HLR7 216 318 20 30 1295 106 32.3 10.8 HLR8 246 366 23 34 1475 122 37.2 12.3 HLR9 286 420 27 39 1715 140 42.7 14.3 HLR10 349 516 32 48 2100 172 52.4 17.5 HLR11 404 594 38 55 2425 198 60.4 20.2 HLR12 492 732 46 68 2950		
HLR3 112 165 10 15 670 55 16.8 5.6 HLR4 127 189 12 18 760 63 19.2 6.3 HLR5 156 231 14 21 935 77 23.5 7.8 HLR6 180 267 17 25 1080 89 27.1 900 HLR7 216 318 20 30 1295 106 32.3 10.8 HLR8 246 366 23 34 1475 122 37.2 12.3 HLR9 286 420 27 39 1715 140 42.7 14.3 HLR10 349 516 32 48 2100 172 52.4 17.5 HLR11 404 594 38 55 2425 198 60.4 20.2 HLR12 492 732 46 68 2950 244 74.4 24.6 HLR13 654 966 61 90 392.5 <td></td>		
HLR4 127 189 12 18 760 63 19.2 6.3 HLR5 156 231 14 21 935 77 23.5 7.8 HLR6 180 267 17 25 1080 89 27.1 90.0 HLR7 216 318 20 30 1295 106 32.3 10.8 HLR8 246 366 23 34 1475 122 37.2 12.3 HLR9 286 420 27 39 1715 140 42.7 14.3 HLR10 349 516 32 48 2100 172 52.4 175.5 HLR12 492 732 46 68 2950 244 74.4 24.6 HLR13 654 966 61 90 392.5 32.2 98.2 32.7 208 V		
HLR5 156 231 14 21 935 77 23.5 7.8 HLR6 180 267 17 25 1080 89 27.1 9.0 HLR7 216 318 20 30 1295 106 32.3 10.8 HLR8 246 366 23 34 1475 122 37.2 12.3 HLR9 286 420 27 39 1715 140 42.7 14.3 HLR10 349 516 32 48 2100 172 52.4 17.5 HLR11 404 594 38 55 2425 198 60.4 20.2 HLR12 492 732 46 68 2950 244 74.4 24.6 HLR13 654 966 61 90 3925 322 98.2 32.7 208 V		
HLR6180267172510808927.19.0HLR72163182030129510632.310.8HLR82463662334147512237.212.3HLR92864202739171514042.714.3HLR103495163248210017252.417.5HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7208 V1179357623.24.5HLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR72163182030129510632.310.8HLR82463662334147512237.212.3HLR92864202739171514042.714.3HLR103495163248210017252.417.5HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7 208 VVVVVVVV HLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR82463662334147512237.212.3HLR92864202739171514042.714.3HLR103495163248210017252.417.5HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7208 VTTTTTTHLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR92864202739171514042.714.3HLR103495163248210017252.417.5HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7208 VVVVVVVHLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR103495163248210017252.417.5HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7208 V </td <td></td>		
HLR114045943855242519860.420.2HLR124927324668295024474.424.6HLR136549666190392532298.232.7208 VVVVVVHLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR173713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR12 492 732 46 68 2950 244 74.4 24.6 HLR13 654 966 61 90 3925 322 98.2 32.7 208 V V V V V V V V HLR14 156 228 14 21 935 76 23.2 98.2 32.7 HLR14 156 228 14 21 935 76 23.2 4.5 HLR15 195 285 18 26 1170 95 29.0 56 HLR16 221 327 20 30 1325 109 33.2 6.4 HLR17 271 399 25 37 1625 133 40.5 7.8 HLR18 312 462 29 43 1875 154 47.0 9.0 HLR19 373 552 355 51 2240 184 56.1 10.8 HLR20 427 633 40 59 2565		
HLR13 654 966 61 90 3925 322 98.2 32.7 208 V 1 156 228 14 21 935 76 23.2 4.5 HLR14 156 228 14 21 935 76 23.2 4.5 HLR15 195 285 18 26 1170 95 29.0 5.6 HLR16 221 327 20 30 1325 109 33.2 6.4 HLR17 271 399 25 37 1625 133 40.5 7.8 HLR18 312 462 29 43 1875 154 47.0 9.0 HLR19 373 552 35 51 2240 184 56.1 10.8 HLR20 427 633 40 59 2565 211 64.3 12.3		
208 V Image: Marcine State Image: Marcine State <td></td>		
HLR1415622814219357623.24.5HLR15195285182611709529.05.6HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR15195285182611709529.056HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR162213272030132510933.26.4HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR172713992537162513340.57.8HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR183124622943187515447.09.0HLR193735523551224018456.110.8HLR204276334059256521164.312.3		
HLR19 373 552 35 51 2240 184 56.1 10.8 HLR20 427 633 40 59 2565 211 64.3 12.3		
HLR20 427 633 40 59 2565 211 64.3 12.3		
HLR21 495 729 46 68 2970 243 74.1 14.3		
HLR22 609 888 57 83 3655 296 90.2 17.6		
HLR23 697 1035 65 96 4180 345 105.2 20.1		
HLR24 858 1260 80 117 5150 420 128.0 24.8		
HLR25 1129 1680 105 156 6780 560 170.7 32.6		
240 V		
HLR26 179 264 17 25 1075 88 26.8 4.5		
HLR27 224 330 21 31 1345 110 33.5 5.6		
HLR28 256 375 24 35 1535 125 38.1 6.4		
HLR29 314 459 29 43 1880 153 46.6 7.8		
HLR30 362 531 34 49 2170 177 54.0 9.0		
HLR31 431 636 40 59 2590 212 64.6 10.8		
HLR32 494 729 46 68 2965 243 74.1 12.4		
HLR33 571 840 53 78 3430 280 85.4 14.3		
HLR34 696 1035 65 96 4175 345 105.2 17.4		
HLR35 810 1185 75 110 4860 395 120.4 20.3		
HLR36 990 1455 92 135 5940 485 147.9 24.8		
HLR37 1316 1920 122 178 7900 640 195.1 32.9		
277 V and 480 V, three-phase wye		
HLR38 206 306 19 28 1235 102 31.1 4.5		
HLR39 258 381 24 35 1550 127 38.7 5.6		
HLR40 294 435 27 40 1765 145 44.2 6.4		
HLR41 361 531 34 49 2170 177 54.0 7.8		
HLR42 416 615 39 57 2495 205 62.5 9.0		

TABLE 10 SELECTION TABLE FOR HEAT LOSS REPLACEMENT

		Area c	overage			Heated length				
Catalog number	Min (ft²)	Max (ft ²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)		
HLR43	497	735	46	68	2985	245	74.7	10.8		
HLR44	571	840	53	78	3425	280	85.4	12.4		
HLR45	656	975	61	91	3935	325	99.1	14.2		
HLR46	807	1188	75	110	4845	396	120.7	17.5		
HLR47	927	1380	86	128	5560	460	140.2	20.1		
HLR48	1142	1680	106	156	6850	560	170.7	24.7		
HLR49	1516	2220	141	206	9100	740	225.6	32.9		
347 V and 600 V, three-phase wye										
HLR50	259	381	24	35	1560	127	38.7	4.5		
HLR51	322	480	30	45	1930	160	48.8	5.6		
HLR52	368	546	34	51	2205	182	55.5	6.4		
HLR53	452	666	42	62	2715	222	67.7	7.8		
HLR54	519	774	48	72	3110	258	78.7	9.0		
HLR55	625	918	58	85	3750	306	93.3	10.8		
HLR56	717	1050	67	98	4300	350	106.7	12.4		
HLR57	826	1215	77	113	4955	405	123.5	14.3		
HLR58	1014	1485	94	138	6080	495	150.9	17.5		
HLR59	1163	1725	108	160	6980	575	175.3	20.1		
HLR60	1433	2100	133	195	8600	700	213.4	24.8		
480 V										
HLR61	360	525	33	49	2160	175	53.4	4.5		
HLR62	448	660	42	61	2685	220	67.1	5.6		
HLR63	512	750	48	70	3070	250	76.2	6.4		
HLR64	627	918	58	85	3770	306	93.3	7.9		
HLR65	721	1065	67	99	4330	355	108.2	9.0		
HLR66	863	1272	80	118	5175	424	129.3	10.8		
HLR67	990	1455	92	135	5940	485	147.9	12.4		
HLR68	1143	1680	106	156	6860	560	170.7	14.3		
HLR69	1391	2070	129	192	8350	690	210.4	17.4		
600 V										
HLR70	447	660	42	61	2685	220	67.1	4.5		
HLR71	559	825	52	77	3360	275	83.8	5.6		
HLR72	639	939	59	87	3835	313	95.4	6.4		
HLR73	781	1152	73	107	4690	384	117.1	7.8		
HLR74	903	1329	84	124	5420	443	135.1	9.0		
HLR75	1078	1590	100	148	6470	530	161.6	10.8		
HLR76	1240	1815	115	169	7440	605	184.5	12.4		
HLR77	1429	2100	133	195	8570	700	213.4	14.3		

Note: Type HLR cables supplied with 15 ft (4.6 m) long cold lead

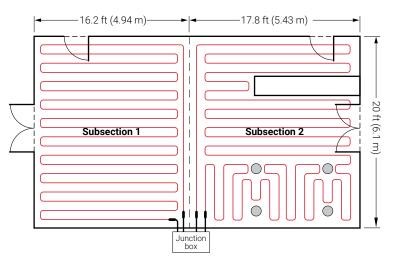
Heating cable length tolerance is -0% to +3%.

Advance to "Determine the heating cable spacing" on page 301.

COMFORT FLOOR HEATING

The heating cables shown in Table 12 have been optimized for comfort floor heating applications. If assistance is required to select heating cables for irregular shaped areas, or applications outside the scope of this design guide, contact your nVent representative or call (800) 545-6258 for design assistance.

Single-phase supply


Small floor areas require only one heating cable. Large floor areas may require two or more heating cables.

• Divide large floor areas into equal subsection areas, if possible (Fig. 17).

Simply select the heating cable from Table 11 or Table 12 based on the total area or subsection area. Under the appropriate voltage, make sure that the total area or subsection area falls within the minimum and maximum range of the "Area coverage" column.

In cases where the heated floor area has been divided into equal subsections, select the appropriate number of heating cables.

Note: Several heating cables in Table 11 may satisfy the requirements. Selecting one cable over another will simply result in a higher or lower watt density or different cable spacing. It may be desirable to select the lowest wattage cable that satisfies the area coverage to reduce the breaker size, or a longer cable to reduce cable spacing. Reduced cable spacing will provide a more uniform floor temperature.

Fig. 17 Typical heating cable layout for comfort floor heating

Note: In Fig. 17, the subsections are equal heated areas.

Example: MI heating cables for comfort floor heating

Heated area	647 ft ² (60.4 m ²) (from Step 3)
Supply voltage and phase	208 V, single-phase (from Step 3)
Subsection area	647 ft ² / 2 = 324 ft ² (see Fig. 17)
	60.4 m ² / 2 = 30.2 m ²
Heating cable catalog number	FH21 (from Table 12)
Cable wattage	3390 W (from Table 12)
Cable voltage	208 V (from Table 12)
Heating cable length	425 ft (129.6 m) (from Table 12)
Number of cables	2 (one cable required for each subsection)

Three-phase supply

Since a balanced three-phase system requires three cables, each cable will occupy 1/3 of the heated floor area when installed.

• Divide the total heated floor area into three equal subsections or a multiple of three equal subsections when more than one circuit is necessary.

Simply select the heating cable from Table 11 or Table 12 based on the subsection area. Under the appropriate voltage, make sure that the subsection area falls within the minimum and maximum range of the "Area coverage" column.

Select the appropriate number of heating cables equal to the number of subsection areas (multiples of three cables required).

Note: Several heating cables in Table 11 may satisfy the requirements. Selecting one cable over another will simply result in a higher or lower watt density or different cable spacing. It may be desirable to select the lowest wattage cable that satisfies the area coverage to reduce the breaker size, or a longer cable to reduce cable spacing. Reduced cable spacing will provide a more uniform floor temperature.

TABLE 11 SELECTION TABLE FOR COMFORT FLOOR HEATING

		Area c	overage			Heated length		
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)
120 V and 2	08 V, three	-phase wye						
SUA2	30	42	2.8	3.9	425	55	16.8	3.5
SUA3	43	64	4.0	5.9	500	140	42.7	4.2
SUA4	45	51	4.2	4.7	550	68	20.7	4.6
SUA7	63	71	5.9	6.6	750	95	29.0	6.3
SUA8	65	97	6.0	9.0	800	177	54.0	6.7
SUB1	87	100	8.0	9.3	1000	132	40.2	8.3
SUB2	83	125	7.7	11.6	1000	240	73.2	8.3
SUB3	107	160	10.0	14.9	1300	280	85.4	10.8
SUB4	125	187	11.6	17.4	1500	320	97.6	12.5
SUB5	154	195	14.3	18.1	1800	260	79.3	15.0
SUB6	160	240	14.9	22.3	1900	375	114.3	15.8
SUB7	194	235	18.0	21.8	2300	310	94.5	19.2
SUB8	191	287	17.8	26.7	2300	550	167.7	19.2
SUB9	257	385	23.9	35.8	3000	630	192.1	25.0
SUB10	359	538	33.4	50.0	4300	717	218.6	35.8
208 V								
SUA1	50	81	4.6	7.5	650	108	32.9	3.1
SUA6	130	198	12.1	18.4	1560	264	80.5	7.5
SUB19	74	110	6.9	10.2	885	245	74.7	4.3
SUB20	101	152	9.4	14.1	1210	340	103.7	5.8
SUB21	137	205	12.7	19.1	1640	440	134.1	7.9
SUB22	160	256	14.9	23.8	2060	525	160.1	9.9
240 V								
SUA1	70	81	6.5	7.5	900	108	32.9	3.8
SUA6	175	198	16.3	18.4	2100	264	80.5	8.8
SUB19	98	146	9.1	13.6	1175	245	74.7	4.9
SUB20	135	202	12.5	18.8	1615	340	103.7	6.7
SUB21	182	274	16.9	25.5	2180	440	134.1	9.1
SUB22	229	345	21.3	32.1	2745	525	160.1	11.4

TABLE 11 SELECTION TABLE FOR COMFORT FLOOR HEATING

		Area c	overage			Heated length			
Catalog number	Min (ft²)	Max (ft ²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)	
277 V (and 4	80 V, three	-phase wye	e)		· · · · · · · · · · · · · · · · · · ·				
SUB19	130	184	12.1	17.1	1565	245	74.7	5.6	
SUB20	179	255	16.6	23.7	2150	340	103.7	7.8	
SUB21	242	330	22.5	30.7	2900	440	134.1	10.5	
SUB22	304	394	28.3	36.6	3650	525	160.1	13.2	
347 V and 60	00 V, three-	phase wye							
SUB11	114	169	10.6	15.7	1400	225	68.6	4.0	
SUB12	162	233	15	21.6	1950	310	94.5	5.6	
SUB13	223	321	20.8	29.8	2700	428	130.5	7.8	
SUB14	305	411	28.3	38.2	3700	548	167.1	10.7	

Note: Type SUA cables supplied with 7 ft (2.1 m) foot long cold lead: type SUB cables supplied with 15.1 (4.8 m) long cold lead. Heating cable length tolerance is -0% to +3%.

TABLE 12 SELECTION TABLE FOR COMFORT FLOOR HEATING

	Area coverage				Heated length			
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)
120 V and 20)8 V, three-	phase wye						
FH1	36	41	3.4	3.8	440	54	16.5	3.7
FH2	42	51	3.9	4.7	545	68	20.7	4.5
FH3	52	58	4.8	5.4	625	77	23.5	5.2
FH4	59	71	5.5	6.6	760	95	29.0	6.3
FH5	72	82	6.7	7.6	880	109	33.2	7.3
FH6	83	98	7.7	9.1	1055	130	39.6	8.8
FH7	99	113	9.2	10.5	1200	150	45.7	10.0
FH8	114	130	10.6	12.1	1390	173	52.7	11.6
FH9	131	158	12.2	14.6	1715	210	64.0	14.3
FH10	159	185	14.8	17.2	1960	245	74.7	16.3
FH11	186	230	17.3	21.4	2400	300	91.5	20.0
208 V								
FH12	60	72	5.6	6.7	755	94	28.7	3.6
FH13	73	89	6.8	8.2	940	118	36.0	4.5
FH14	90	101	8.3	9.3	1075	134	40.9	5.2
FH15	102	123	9.5	11.4	1320	164	50.0	6.3
FH16	124	143	11.5	13.2	1520	190	57.9	7.3
FH17	144	169	13.4	15.7	1830	225	68.6	8.8
FH18	170	195	15.8	18.1	2080	260	79.3	10.0
FH19	196	230	18.2	21.4	2400	300	91.5	11.5
FH20	231	274	21.5	25.4	2960	365	111.3	14.2
FH21	275	325	25.6	30.2	3390	425	129.6	16.3
FH22	326	390	30.3	36.2	4160	520	158.5	20.0

TABLE 12 SELECTION TABLE FOR COMFORT FLOOR HEATING

		Area c	overage			Heated length		
Catalog number	Min (ft²)	Max (ft²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)
240 V	(10)	(10)	()	()		(14)	()	
FH23	70	84	6.5	7.8	875	108	32.9	3.6
FH24	85	101	7.9	9.4	1095	135	41.2	4.6
FH25	102	119	9.5	11.1	1240	155	47.3	5.2
FH26	120	145	11.2	13.5	1515	190	57.9	6.3
FH27	146	164	13.6	15.2	1785	215	65.5	7.4
FH28	165	195	15.3	18.1	2110	260	79.3	8.8
FH29	196	225	18.2	20.9	2400	300	91.5	10.0
FH30	226	265	21.0	24.6	2780	345	105.2	11.6
FH31	266	320	24.7	29.7	3430	420	128.0	14.3
FH32	321	375	29.8	34.9	3920	490	149.4	16.3
FH33	376	450	34.9	41.8	4800	600	182.9	20.0
277 V and 4	80 V, three-	phase wye						
FH34	80	97	7.4	9.0	1005	125	38.1	3.6
FH35	98	119	9.1	11.0	1270	155	47.3	4.6
FH36	120	135	11.1	12.5	1440	178	54.3	5.2
FH37	136	165	12.6	15.3	1760	218	66.5	6.4
FH38	166	195	15.4	18.1	2020	253	77.1	7.3
FH39	196	225	18.2	20.9	2435	300	91.5	8.8
FH40	226	260	21.0	24.2	2780	345	105.2	10.0
FH41	261	310	24.3	28.8	3200	400	122.0	11.6
FH42	311	370	28.9	34.4	3915	490	149.4	14.1
FH43	371	435	34.5	40.4	4535	564	172.0	16.4
FH44	436	518	40.5	48.1	5560	690	210.4	20.1
347 V and 6	00 V, three-	phase wye						
FH45	100	120	9.3	11.2	1275	155	47.3	3.7
FH46	121	150	11.2	13.9	1585	195	59.5	4.6
FH47	151	170	14.0	15.8	1825	220	67.1	5.3
FH48	171	205	15.9	19.1	2230	270	82.3	6.4
FH49	206	240	19.1	22.3	2550	315	96.0	7.3
FH50	241	285	22.4	26.5	3050	376	114.6	8.8
FH51	286	330	26.6	30.7	3500	430	131.1	10.1
FH52	331	380	30.8	35.3	4040	497	151.5	11.6
FH53	381	465	35.4	43.2	4935	610	186.0	14.2
FH54	466	533	43.3	49.5	5650	710	216.5	16.3
480 V								
FH55	140	167	13.0	15.5	1760	215	65.5	3.7
FH56	168	205	15.6	19.1	2190	270	82.3	4.6
FH57	206	235	19.2	21.8	2480	310	94.5	5.2
FH58	236	285	21.9	26.5	3030	380	115.9	6.3
FH59	286	335	26.6	31.1	3530	435	132.6	7.4
FH60	336	395	31.2	36.7	4220	520	158.5	8.8
FH61	396	455	36.8	42.3	4800	600	182.9	10.0
FH62	456	518	42.4	48.1	5565	690	210.4	11.6

TABLE 12 SELECTION TABLE FOR COMFORT FLOOR HEATING

	Area coverage					Heated length		
Catalog number	Min (ft²)	Max (ft ²)	Min (m²)	Max (m²)	Cable wattage (W)	(ft)	(m)	Heating cable current (A)
600 V								
FH63	170	210	15.8	19.5	2185	270	82.3	3.6
FH64	211	255	19.6	23.7	2715	340	103.7	4.5
FH65	256	295	23.8	27.4	3120	385	117.4	5.2
FH66	296	360	27.5	33.5	3830	470	143.3	6.4
FH67	361	420	33.6	39.0	4400	545	166.2	7.3
FH68	421	488	39.1	45.3	5275	650	198.2	8.8

Note: Type FH cables supplied with 15 ft (4.6 m) long cold lead.

Tolerance on heating cable length is -0% to +3%.

Advance to "Determine the heating cable spacing" on page 301.

RADIANT SPACE HEATING

For radiant space heating, the total heat loss in Btu/hr or wattage is supplied by the customer. Heating cables can be selected for single phase or three-phase voltage supplies as shown for comfort floor heating, but based on the heat loss in watts required for each area. Use Table 11 or Table 12 to select a heating cable from the "Cable wattage" column that is equal to or the next highest wattage than the wattage specified.

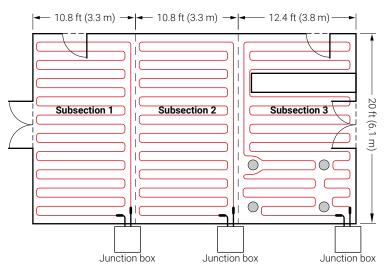


Fig. 18 Typical heating cable layout for radiant space heating

Example: MI heating cables for radiant space heating

Heated area Supply voltage and phase Subsection area

Btu requirement Power required Power per subsection Heating cable catalog number Cable wattage Cable voltage Heating cable length Number of cables 647 ft² (60.4 m²) (from Step 3) 208 V, single phase (from Step 3) 647 ft² / 3 = 216 ft² 60.4 m² / 3 = 20.1 m² 34,800 Btu/hr (from Step 3) 34,800 Btu/hr / 3.412 = 10200 W 10200 W / 3 = 3400 W FH21 (from Table 12) 3390 W 208 V (from Table 12) 425 ft (129.6 m) (from Table 12) 3 (one heating cable per subsection)

Note: Divide Btu/hr by 3.412 to convert to watts.

Advance to "Determine the heating cable spacing" following.

DETERMINE THE HEATING CABLE SPACING

In this section you will determine the heating cable spacing for heat loss replacement, comfort floor heating and radiant space heating.

For heat loss replacement, the heated area in the equation following is the total floor area. For comfort floor heating and radiant space heating, the heated area does not include the space occupied by tubs and spas, toilets, cabinets, and other permanent fixtures. This heated floor area was determined in Step 3.

Cable spacing (in) =	Heated area (ft ²) x 12 in	
	Heating cable length (ft)	
Cable spacing (cm) =	Heated area (m²) x 100 cm	

Heating cable length (m)

Round to the nearest 1/2 in or nearest 1 cm to obtain cable spacing.

Note: If a large area has been divided into subsections or if a three-phase voltage supply is used, the heated area in the above equations will be the subsection area and the heating cable length will be the length of the cable selected for the subsection.

Example: MI heating cables for heat loss replacement

Subsection area	1067 ft² (99.1 m²)
Heating cable catalog number	HLR24 (from Table 10)
Heating cable length	420 ft (128.0 m) (from Table 10)
Cable spacing	(1067 ft ² x 12 in) / 420 ft = 30.5 in
	Rounded to 31 in

Rounded to 31 in (99.1 m² x 100 cm) / 128.0 m = 77.4 cm **Rounded to 77 cm**

Example: MI heating cables for comfort floor heating

Subsection area
Heating cable catalog number
Heating cable length
Cable spacing

324 ft² (30.2 m²) FH21 (from Table 12) 425 ft (129.6 m) (from Table 12) (324 ft² x 12 in) / 425 ft = 9.1 in Rounded to 9 in (30.2 m² x 100 cm) / 129.6 m = 23.3 cm Rounded to 23 cm

Example: MI heating cables for radiant space heating

	(00.1 3 100) (100.6 10
	Rounded to 6 in
Cable spacing	(216 ft ² x 12 in) / 425 ft = 6.1 in
Heating cable length	425 ft (129.6 m) (from Table 12)
Heating cable catalog number	FH21 (from Table 12)
Subsection area	216 ft ² (20.1 m ²)

(20.1 m² x 100 cm) / 129.6 m = 15.5 cm Rounded to 15 cm

Advance to Step 5, page 303.

Fl	oor Heating System Design Steps
1.	Determine the application
2.	Select the heating cable system and installation method
3.	Determine the floor configuration
4.	Determine the heating cable spacing, layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step 5 Determine the electrical parameters

In this step you will determine the electrical parameters. This section is organized by heating cable type.

For RaySol self-regulating heating cables, see below.

For MI heating cables, see page 304.

RAYSOL SELF-REGULATING HEATING CABLE

DETERMINE NUMBER OF CIRCUITS

Record the number of circuits (from Step 4) to be used on the worksheet.

SELECT BRANCH CIRCUIT BREAKING RATING

For RaySol, the circuit breaker rating was determined in Step 4 using Table 5 or Table 8.

Use ground-fault protection devices (GFPDs) for all RaySol heating cable applications.

 \triangle **WARNING**: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of the loads on all the circuit breakers in the system.

Calculate the Circuit Breaker Load (CBL) as:

CBL(kW) = -	Circuit breaker rating (A) x 0.8 x Supply voltage
CDL(KW) = -	1000

Calculate the Total Transformer Load as follows:

Total Transformer Load (kW) = $CBL_1 + CBL_2 + CBL_3... + CBL_N$

Example: RaySol heating cables for heat loss replacement

Total transformer load	5 kW x 4 = 20 kW
Circuit breaker load	(30 A x 0.8 x 208 V) / 1000
Circuit breaker rating	30 A breaker (from Step 4)
Number of circuits	4 (from Step 4)
Heating cable catalog number	RaySol-2 (from Step 4)

Example: RaySol heating cables for comfort floor heating

Total transformer load	5 kW x 4 = 20 kW
Circuit breaker load	(30 A x 0.8 x 208 V) / 1000 = 5
Circuit breaker rating	30 A breaker (from Step 4)
Number of circuits	4 (from Step 4)
Heating cable catalog number	RaySol-2 (from Step 4)

Advance to Step 6, page 306.

5kW

1000 = 5kW

MI HEATING CABLE

DETERMINE NUMBER OF CIRCUITS

For single-phase circuits, individual heating cables are normally connected to separate circuit breakers. Multiple heating cables may be connected in parallel to reduce the number of circuits with permission from the Authority Having Jurisdiction. The single-phase heating cable current is shown in Table 10, Table 11, and Table 12.

For three-phase circuits used in floor heating systems, the three heating cables are generally connected in the delta configuration shown in Fig. 20 on page 312. Heating cables may also be connected using the wye configuration shown in Fig. 21 on page 313, but this configuration is less common. For both delta and wye configurations, each set of three equal cables form a single circuit.

SELECT BRANCH CIRCUIT BREAKING RATING

The power output and heating cable current draw for the floor heating cables are shown in Table 10, Table 11, and Table 12.

For single-phase circuits, the load current must not exceed 80% of the circuit breaker rating.

Load current = Heating cable current (for a single circuit)

Circuit breaker rating = Load current / 0.8

For a Delta connected three-phase circuit, shown in Fig. 20 on page 312, the load current can be determined by multiplying the heating cable current times 1.732 and it must not exceed 80% of the 3-pole circuit breaker rating.

Load current = Heating cable current x 1.732 (for a single Delta connected circuit)

Circuit breaker rating = Load current / 0.8

For a Wye connected three-phase circuit, shown in Fig. 21 on page 313, the load current is the same as the heating cable current and it must not exceed 80% of the 3-pole circuit breaker rating.

Load current = Heating cable current (for a single Wye connected circuit)

Circuit breaker rating = Load current / 0.8

Record the number and ratings of the circuit breakers to be used. Use groundfault protection devices (GFPDs) for all applications. For three-phase circuits, ground fault may be accomplished using a shunt trip three-pole breaker and ground fault sensor.

Circuit breaker rating (amps) _____ Number of circuit breakers _____

WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

DETERMINE TRANSFORMER LOAD

The total transformer load is the sum of the loads in the system. Calculate the Total Transformer Load as follows:

For cables of equal wattage:

Transformer load (kW) =	Cable (W) x Number of cables
Transformer Ioau (KW) –	1000

When cable wattages are not equal:

Transformer load (kW) =

Cable₁ (W) + Cable₂ (W) + Cable₃ (W)... + Cable_N (W)

1000

Example: MI heating cables for heat loss replacement

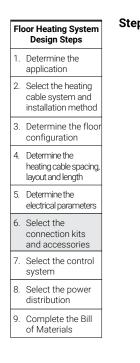
Heating cable catalog number HLR24 (from Step 4) Heating cable current 24.8 A (from Table 10) Load current 24.8 x 1.732 = 43 A Circuit breaker rating 60 A breaker, 80% loading 48 A Number of circuit breakers 1 (3-pole breaker) Cable wattage 5150 W (from Step 4) Number of cables 3 (from Step 4) Total transformer load (5150 W x 3) / 1000 = 15.5 kW

Example: MI heating cables for comfort floor heating

Heating cable catalog number Heating cable current Load current Circuit breaker rating Number of circuit breakers Cable wattage Number of cables Total transformer load

FH21 (from Step 4) 16.3 A (from Table 12) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4) 2 (from Step 4) (3390 W x 2) / 1000 = 6.8 kW

16.3 A


3

Example: MI heating cables for radiant space heating

Heating cable catalog number Heating cable current Load current Circuit breaker rating Number of circuit breakers Cable wattage Number of cables Total transformer load

Advance to Step 6, page 306.

FH21 (from Step 4) 16.3 A (from Table 12) 25 A breaker, 80% loading 20 A 3390 W (from Step 4) 3 (from Step 4) (3390 W x 3) / 1000 = 10.2 kW

Step 6 Select the connection kits and accessories

In this step you will determine the number of junction boxes, power connections, end seals and splice kits required. This section is separated by heating cable type.

For RaySol self-regulating heating cables, see below.

For MI heating cables, see page 304.

RAYSOL SELF-REGULATING HEATING CABLE

SELECT NUMBER OF POWER CONNECTION KITS

For heat loss replacement, one FTC-P power connection kit and two junction boxes are required per circuit. For comfort floor heating, one FTC-XC power connection kit and two junction boxes are required per circuit

SELECT JUNCTION BOX

Select a contractor-supplied UL Listed and/or CSA Certified junction box that is suitable for the location. Use a box with minimum internal volume of 16 cubic inches if the box is metallic and 19 cubic inches if the box is not metallic.

Note: The junction box must be accessible according to national electrical codes.

TABLE 13 CONNECTION KITS AND ACCESSORIES

	Catalog number	Description	Standard packaging	Usage
RaySol Connection Kits				
	FTC-P	Power connection and end seal. (Junction box not included)	1	1 per cable run (for heat loss replacement)
	FTC-XC	Power connection and end seal. (Junction box not included)	1	1 per cable run (for comfort floor heating and radiant space heating)
Mar and a second	FTC-HST	Low-profile splice/tee	2	As required (for embedded applications, splice must be accessible)
	RayClic-E	Extra end seal	1	Replacement end seal

Example: RaySol heating cables for heat loss replacement

Junction box	Contractor supplied		
Quantity	8		
Connection kit	FTC-P		
Quantity	4		
Example: RaySol heating cables for comfort floor heating			
Junction box	Contractor supplied		
Quantity	8		
Connection kit	FTC-XC		
Quantity	4		
Advance to Step 7, page 308.			

306 | nVent.com/RAYCHEM

MI HEATING CABLES

A typical RAYCHEM floor heating system consists of several accessories. All of the accessories work together to provide a safe and reliable floor heating system that is easy to install and maintain.

SELECT JUNCTION BOX

Select a UL Listed and/or CSA Certified junction box that is suitable for the location, such as the RAYCHEM D1297TERM4. Use a box with minimum internal volume of 16 cubic inches if the box is metallic and 19 cubic inches if the box is not metallic. Metal junction boxes are recommended.

Note: The junction box must be accessible according to the national electrical codes.

SELECT PREPUNCHED STRAPPING

For heat loss replacement applications, use stainless steel prepunched strapping attached to the bottom of the concrete floor to secure the heating cables at the proper spacing. For floor heating applications where the heating cable is embedded in concrete or mortar floors, use galvanized steel prepunched strapping to maintain the heating cables at the proper spacing.

Number of rolls required = Total area (ft²) x 0.005 (Total area (m²) x 0.05)

TABLE 14 ACCESSORIES

	Catalog number	Description	Standard packaging	Usage
	HARD-SPACER- GALV-25MM- 25M	Galvanized steel prepunched strapping. Note: Use when cable is embedded in concrete or mortar.	82 ft (25 m) rolls	No. rolls = 0.005 x area (ft²) No. rolls = 0.05 x area (m²)
~	HARD-SPACER- SS-25MM-25M	Stainless steel prepunched strapping Note: Use with all heat loss replacement applications.	82 ft (25 m) rolls	No. rolls = 0.005 x area (ft²) No. rolls = 0.05 x area (m²)
	D1297TERM4	A cast aluminum junction box (NEMA 3) for installation in nonhazardous and CID2 locations. Three 1/2" NPT entries on bottom, provided with plugs. Includes 4-pole terminal block (CSA - 600 V, 65 A, 18 - 6 AWG; UL - 300 V, 65 A, 18 - 6 AWG). External mounting feet. CSA approved for Class I, Div. 2, Groups A, B, C, and D. Enclosure dimensions: 6 in x 6 in x 4 in (150 mm x 150 mm x 100 mm).	1	
Example: MI heating cables for heat loss replacement				

Junction box	Contractor supplied
Quantity	1 (7 entries)
Prepunched strapping	HARD-SPACER-SS-25MM-25M
Quantity	16
Example: MI heating cables for comfort flo	oor heating
Junction box	D1297TERM4
Quantity	2
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M
Quantity	4
Example: MI heating cables for radiant spa	ace heating
Junction box	D1297TERM4
Quantity	3
Prepunched strapping ¹	HARD-SPACER-GALV-25MM-25M
Quantity	4

¹For comfort floor heating and radiant space heating applications in slab floors, prepunched strapping may not be required if it is possible to attach the heating cable to the reinforcement.

Floor Heating System Design Steps 1. Determine the application 2. Select the heating cable system and installation method Determine the З. floor configuration 4. Determine the heating cable spacing, layout and length 5. Determine the electrical parameters 6. Select the connection kits and accessories 7. Select the control system 8. Select the power distribution

9. Complete the Bill of Materials

Advance to Step 7, page 308.

Step **Z** Select the control system

There are two types of controls that may be used with floor heating systems: floor temperature sensing control and ambient temperature control with overlimit sensor.

Floor temperature sensing control must be used for heat loss replacement and comfort floor heating applications, while an ambient temperature control with an overlimit sensor must be used for radiant space heating applications.

For RaySol and MI heating cables, the recommended control for heat loss replacement and comfort floor heating is RAYCHEM ECW-GF. For RaySol or MI heating cable installations where temperature control and temperature monitoring is desired, a nVent RAYCHEM C910-485 or RAYCHEM ACS-30 controller is recommended.

TABLE 15 TEMPERATURE CONTROL OPTIONS

Features	RAYCHEM ECW-GF	RAYCHEM C910-485 ²	RAYCHEM ACS-30
Number of heating cable circuits	Single	Single	Multiple
Sensor	Thermistor	RTD ¹	See data sheet
Sensor length	25 ft	Varies	п
Set point range	32°F to 200°F (0°C to 93°C)	−0°F to 200°F (−18°C to 93°C)	u
Enclosure	NEMA 4X	NEMA 4X	п
Deadband	2°F to 10°F (2°C to 6°C)	1°F to 10°F (1°C to 6°C)	n
Enclosure limits	-40°F to 140°F (-40°C to 60°C)	−40°F to 140°F (−40°C to 60°C)	
Switch rating	30 A	30 A	н
Switch type	DPST	DPST	п
Electrical rating	100-277 V	100-277 V	н
Approvals	c-UL-us	c-CSA-us	п
Ground-fault protection	30 mA fixed	20 mA to 100 mA (adjustable)	n
Alarm outputs			н
AC relay	2 A at 277 Vac	100–277 V, 0.75 A max.	Π
Dry contact relay	2 A at 48 Vdc	48 Vac/dc, 500 mA max.	

¹ Ordered separately

² The C910-485 is available to provide RS-485 communication capability. Connect to the BMS using RAYCHEM ProtoNode multi-protocol gateways

TABLE 16 CONTROL SYSTEMS

	Catalog number	Description
Electronic thermos	tats and accessories	
	ECW-GF	Electronic ambient sensing controller with 30-mA ground-fault protection. The controller can be programmed to maintain temperatures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a Type 4X rated enclosure. The controller features an AC/DC dry alarm contact relay. An optional ground-fault display panel (ECW-GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
	ECW-GF-DP	An optional remote display panel (ECW-GF-DP) that can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations.
2		
	MI-GROUND-KIT	Grounding kit for nonmetallic enclosures (for MI only)
Electronic controlle	ers and sensors	
	C910-485	The C910-485 is a compact, full-featured microprocessor-based single-point heat-trace controller. The C910-485 provides control and monitoring of electrical heat-tracing circuits for both freeze protection and temperature maintenance, and can be set to monitor and alarm for high and low temperature, high and low current, ground-fault level, and voltage. The RAYCHEM C910-485 controller is available with an electromechanical relay (EMR) for use in ordinary areas. The C910-485 comes with an RS-485 communication module.
	ACS-UIT2 ACS-PCM2-5	The RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing used in various commercial applications such as pipe freeze protection, roof and gutter de-icing, surface snow melting, hot water temperature maintenance and floor heating. The RAYCHEM ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, with a single ACS-UIT2 user interface terminal. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V.
	ProtoNode-RER	The RAYCHEM ProtoNode is an external, high performance multi- protocol gateway for customers needing protocol translation between Building Management Systems (BMS) and the RAYCHEM ACS-30 or C910-485 controllers. ProtoNode-RER is for BACnet® or Metasys® N2 systems.
Cast.	RTD-200 RTD10CS RTD50CS	Stainless steel jacketed three-wire RTD (Resistance Temperature Detector) used with RAYCHEM C910-485 and ACS-30 controllers. RTD-200: 3-in (76 mm) temperature sensor with a 6-ft (1.8 m) lead wire and 1/2-in NPT bushing RTD10CS: temperature sensor with a 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-inch NPT bushing
		RTD50CS: temperature sensor with a 50-ft (3 m) flexible armor, 18-in (457 mm) lead wire and 1/2-in NPT bushing

Example: RaySol heating cables for heat loss replace	cement
Multiple circuits, monitoring requested	ACS-30
Quantity	1
Example: MI heating cables for heat loss replaceme	ent
Single circuit, monitoring requested	ACS-30*
Quantity	1
* Use ACS-30 General part number (P000001232) for Please contact your nVent representative for a cust quotation.	
Example: RaySol and MI heating cables for comfort	floor heating
Multiple circuits, electronic thermostat requested	ECW-GF
Quantity	1
Example: MI heating cables for radiant space heating	ıg
Multiple circuits, electronic thermostat requested ¹	ECW-GF
Quantity	1

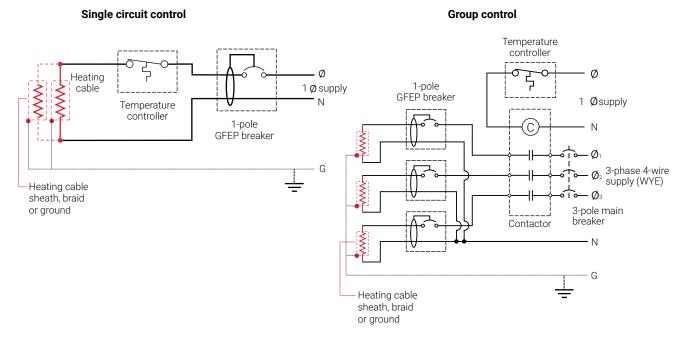
¹ Ambient control to be supplied by the contractor

Floor Heating System Design Steps 1. Determine the application 2. Select the heating cable system and installation method 3. Determine the floor configuration 4 Determine the heating cable spacing. layout and length 5. Determine the electrical parameters 6. Select the connection kits and accessories 7. Select the control system 8. Select the power distribution 9. Complete the Bill of Materials

Step Select the power distribution

Power to the heating cables can be provided in several ways:

- · Directly through the temperature controller
- Through external contactors activated by a temperature controller
- Through an HTPG power distribution panel


SINGLE CIRCUIT CONTROL

RaySol and MI heating cable circuits that do not exceed the current rating of the selected control can be switched directly (Fig. 20). When the total electrical load exceeds the rating of the controller, an external contactor is required.

The three-phase Delta and Wye configurations shown in Fig. 20 and Fig. 21 are common wiring configurations for MI heating cables used to heat large areas. DO NOT use these wiring configurations for RaySol heating systems. A single pole temperature controller may be used to control a three-phase circuit through a contactor.

GROUP CONTROL

For group control, a single temperature controller may be used to control two or more single-phase or three-phase circuits. Multiple single-phase RaySol or MI heating cable circuits may be controlled by a single temperature controller, through a contactor, as shown in Fig. 19. Multiple three-phase MI heating cable circuits may be controlled in the same manner.

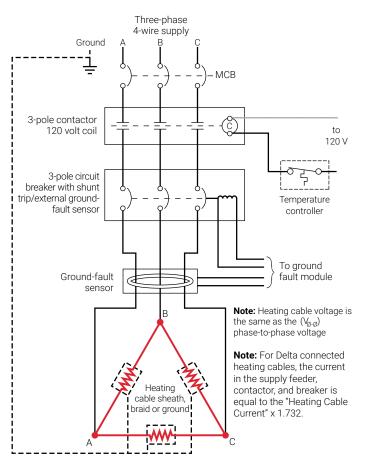


Fig. 20 Typical single circuit control for three-phase delta connected cables

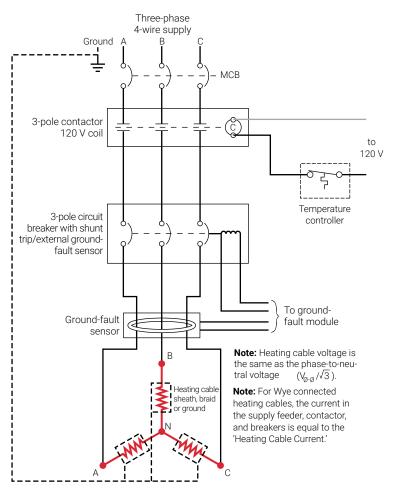


Fig. 21 Typical single circuit control for three-phase wye connected cables

Large systems with many circuits should use an HTPG power distribution panel. The HTPG is a dedicated power-distribution, control, ground-fault protection, monitoring, and alarm panel for broad temperature-maintenance heat-tracing applications. This enclosure contains an assembled circuit-breaker panelboard. Panels are equipped with ground-fault circuit breakers with or without alarm contacts. The group control package allows the system to operate automatically in conjunction with a temperature control system.

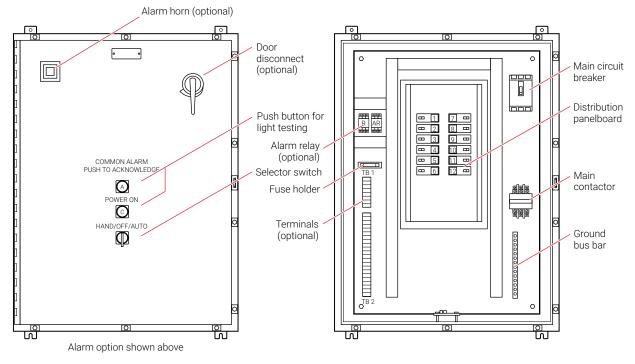
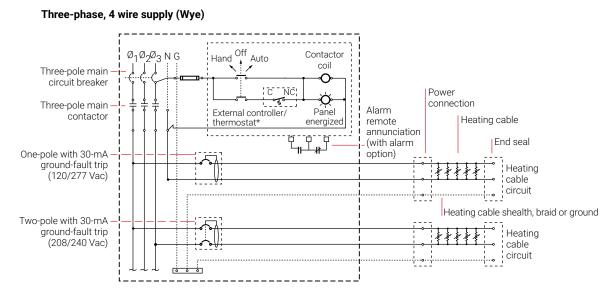
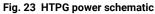




Fig. 22 HTPG power distribution panel

TABLE 17 POWER DISTRIBUTION

	Catalog number	Description
Power Distribution	and Control Panels	
	HTPG	Heat-tracing power distribution panel with ground-fault and monitoring for group control.

Fle	oor Heating System Design Steps
1.	Determine the application
2.	Select the heating cable system and installation method
3.	Determine the floor configuration
4.	Determine the heating cable spacing, layout and length
5.	Determine the electrical parameters
6.	Select the connection kits and accessories
7.	Select the control system
8.	Select the power distribution
9.	Complete the Bill of Materials

Step Complete the Bill of Materials

If you used the Design Worksheet to document all your design parameters, you should have all the details necessary complete your Bill of Materials.

FLOOR HEATING PRE-DESIGN WORKSHEET

Step Determine the application (see page 277)

Select the application that best describes your needs

- Heat loss replacement
- Comfort floor heating
- □ Radiant space heating

If you have selected the radiant space heating application, use the MI Heating Cable Floor Heating Design Worksheet on page 25.

Step 2 Determine the installation method

Select the installation you plan to use.

Heat loss replacement

- □ Attach to the bottom of the floor
 - RaySol
 - D MI

Comfort floor heating

- Embed in concrete
 - RaySol
 - D MI
- **D** Embed in mortar bed
 - RaySol
 - D MI

Radiant space heating

- □ Embed in concrete
 - RaySol*
 - D MI
- □ Embed in mortar bed
 - □ RaySol*
 - D MI

*Please contact nVent for design assistance.

RAYSOL HEATING CABLE FLOOR HEATING DESIGN WORKSHEET

Heat Loss Replacement

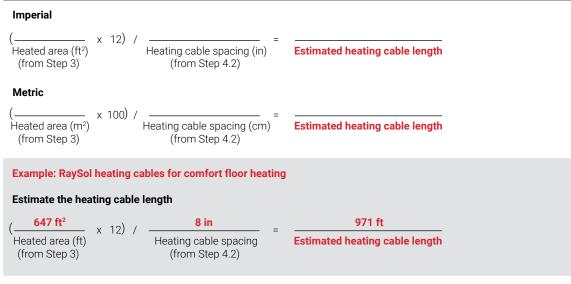
Heat loss replacer	nent (see Fig. 9	on page 279)	Minimum ambient design temperature	Insulation R-value	Supply voltage and phase	Control requirements
~		=	°F/°C		Volts	
Side A (length) (ft/m)	Side B (width)	= Heated area (ft²/m²)	17 3	ft2·°F·hr/Btu	Phase	
Example: RaySol h	eating cables f	or heat loss				
replacement 80 ft	40 ft	3200 ft ²	−10°F	R-20	208 V	Electronic
Side A (length) (ft/m)	Side B (width)	= Heated area (ft²/m²)		(20 ft2·°F·hr/ Btu)	Single phase	thermostat, monitoring requested
Step 🛿 Determine	the heating ca	ble spacing, layo	ut and length			
4.1 Select the app		_ ,	e Table 3 on pag	ge 282)		
Supply voltage: Catalog number:		· · · ·				
Example: RaySol I			cement			
Supply voltage: Catalog number:	•					
4.2 Determine the	RaySol heating	cable spacing (s	ee Table 4 on pa	ge 283)		
Minimum ambient	•		C (from Step 3))		
Minimum ambient Insulation R-value:	temperature:	°F/°)		
4.2 Determine the Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space	temperature: sing: neating cables for temperature:	•F/° •····································	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3))		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value:	temperature: bing: leating cables f o temperature: bing:	• F/° • in/cl • or heat loss repla – 10°F (from Step 3 R-20 (from Step 3 24 in (from Table	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4))		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol I Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial	temperature: bing: beating cables for temperature: bing: RaySol heating	• F/° • in/co • heat loss repla – 10°F (from Step R-20 (from Step 3 24 in (from Table cable layout and	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) l length	t)		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the	temperature: bing: beating cables for temperature: bing: RaySol heating	• F/° • in/co • heat loss repla – 10°F (from Step R-20 (from Step 3 24 in (from Table cable layout and	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) l length	t)		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol I Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial	temperature: bing: beating cables for temperature: bing: RaySol heating	• F/° • in/co • heat loss repla – 10°F (from Step R-20 (from Step 3 24 in (from Table cable layout and	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) l length	t)		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial (temperature: cing: teating cables for temperature: cing: 12) / Heating content 12) / Heating content 100) / Heating content Heating content 100) / Heating content Heating content Hea	<pre>°F/°iin/cl or heat loss repla _ 10°F (from Step 3 24 in (from Table cable layout and cable spacing (in) m Step 4.2) </pre>	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) l length Estimated hear	ting cable length		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial (temperature: cing: temperature: cing: RaySol heating 12) / Heating content of the formation of the form	<pre>°F/°i in/cl or heat loss repla - 10°F (from Step 3 24 in (from Table cable layout and cable spacing (in) m Step 4.2)</pre>	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) Hength Estimated hear Estimated hear	ting cable length		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial (temperature: cing: temperature: cing: RaySol heating 12) / Heating content (from 100) / Heating content Heating content temperature: 100) / Heating content Heating content temperature: 100) / Heating content 100) /	<pre>°F/°i in/cl or heat loss repla - 10°F (from Step 3 24 in (from Table cable layout and cable spacing (in) m Step 4.2)</pre>	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) Hength Estimated hear Estimated hear	ting cable length		
Minimum ambient Insulation R-value: Heating cable space Example: RaySol H Minimum ambient Insulation R-value: Heating cable space 4.3 Determine the Imperial (temperature: cing: leating cables for temperature: cing: RaySol heating 12) / Heating co (from 100) / Heating co ating cables for h g cable length	<pre>°F/°i in/cl or heat loss repla - 10°F (from Step 3 24 in (from Table cable layout and cable spacing (in) m Step 4.2)</pre>	C (from Step 3) (from Step 3) m (from Table 4 cement 3) 3) 4) I length Estimated heat Estimated heat	ting cable length		

Estimated heating cable length (ft/m) (from Step 4.3)	Maximum circuit length (ft/m) (from Table 5)	Number of circuits
Round the number of circuits to the ne		
Example: RaySol heating cables for he	· · · · ·	A (rounded)
Estimated heating cable length	410 ft Maximum circuit length	- = Number of circuits
(from Step 4.3)	(from Table 5)	

nd allowance			
Number of circuits		x ———— Number of ends	=
(from Step 4.4)	ft/m per end (from Table 6)	Number of ends	End allowance (ft/m)
Connection kit allowar	nce		
Number of kits	ft/m per connectio (from Table 6)		= Connection kit allowance (ft/m)
Total heating cable all	owance		
End allowance (ft/m)	+ Connection kit all	lowance (ft/m)	= Total heating cable allowance (ft/m)
Estimated total heatin	g cable length		
Estimated heating cab	\rightarrow	Total heating cable allowance (ft/m)	= Estimated total heating
(from Step	4.3)		cable length (ft/m)
(from Štep Example: RaySol heatir End allowance	4.3)		cable length (ft/m)
(from Štep Example: RaySol heatir	4.3) for heat los		
(from Štep Example: RaySol heatin End allowance 4 Number of circuits	4.3) ng cables for heat los 4 ft/m per end (from Table 6)	ss replacement	cable length (ft/m)
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4)	4.3) ng cables for heat los 4 ft/m per end (from Table 6)	ss replacement	cable length (ft/m)
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa	4.3) Ing cables for heat los 4 ft/m per end (from Table 6) nce	x 2 Number of ends	cable length (ft/m) =
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa 4 x	4.3) ng cables for heat los 4 ft/m per end (from Table 6) nce 4 ft/m per connection (from Table 6)	x 2 Number of ends	cable length (ft/m) = 32 ft End allowance 16 ft
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa 4 Number of kits	4.3) ng cables for heat los 4 ft/m per end (from Table 6) nce 4 ft/m per connection (from Table 6)	ss replacement x 2 Number of ends	cable length (ft/m) = 32 ft End allowance 16 ft
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa 4 Number of kits X	4.3) and cables for heat loss 4 4 ft/m per end (from Table 6) nce 4 ft/m per connection (from Table 6) lowance	ss replacement x 2 Number of ends n kit	cable length (ft/m) $= \frac{32 \text{ ft}}{\text{End allowance}}$ $= \frac{16 \text{ ft}}{\text{Connection kit allowance}}$
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa 4 Number of kits Total heating cable all 32 ft	4.3) Ing cables for heat loss 4 ft/m per end (from Table 6) Ince 4 ft/m per connection (from Table 6) Iowance + 16 Connection ki	ss replacement x 2 Number of ends n kit	cable length (ft/m) $= \frac{32 \text{ ft}}{\text{End allowance}}$ $= \frac{16 \text{ ft}}{\text{Connection kit allowance}}$ $= \frac{48 \text{ ft}}{\text{Total heating cable}}$
(from Step Example: RaySol heatin End allowance 4 Number of circuits (from Step 4.4) Connection kit allowa 4 Number of kits Total heating cable all 32 ft End allowance	4.3) Ing cables for heat loss 4 4 ft/m per end (from Table 6) Ince 4 ft/m per connection (from Table 6) Iowance + 16 Connection king cable length	ss replacement x 2 Number of ends n kit	cable length (ft/m) $= \frac{32 \text{ ft}}{\text{End allowance}}$ $= \frac{16 \text{ ft}}{\text{Connection kit allowance}}$ $= \frac{48 \text{ ft}}{\text{Total heating cable}}$

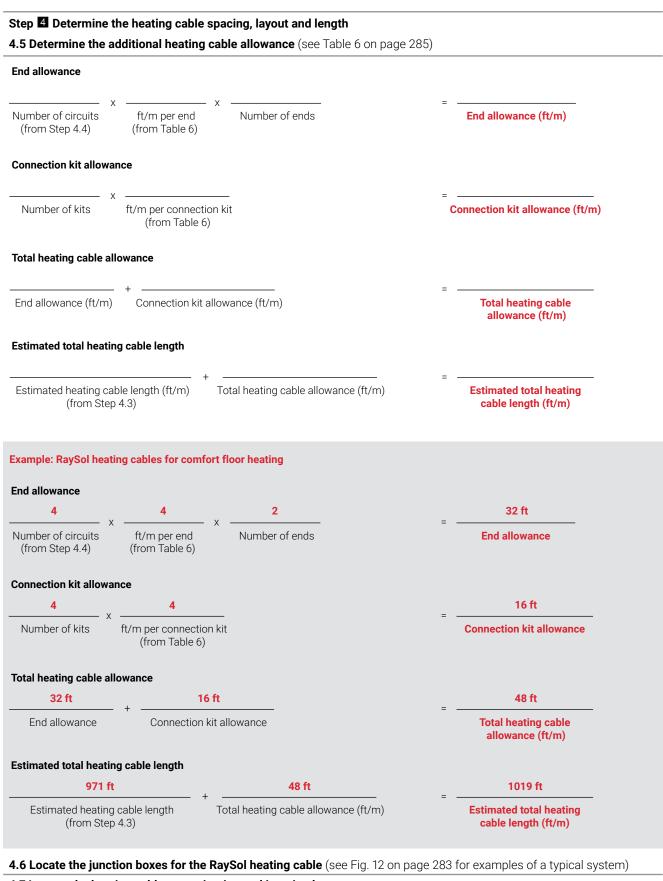
4.7 Lay out the heating cable runs, circuits, and junction boxes

4.8 Record the circuit information


Advance Step 5 on page 323.

Comfort Floor Heating

Comfort floor heat	t ing (see Fig. 10 o	n page 280)	Minimum ambient design temperature	Insulation R-value	Supply voltage and phase	Control requirements
Total area (ft²/m²)	= Permanent fixture (ft²/m²)	Heated area (ft²/m²)	°F/°C	ft2:°F·hr/Btu	Volts Phase	
Step 4 Determine	the heating cable	spacing, layou	t and length			
4.1 Select the app	ropriate RaySol h	eating cable (se	ee Table 3 on pag	e 282)		
Supply voltage: Catalog number:		, , ,				
Example: RaySol h Supply voltage: Catalog number: 1	208 V (from Step 3	3)	heating			
4.2 Determine the	RaySol heating c	able spacing (s	ee Table 7 on pa	ge 286)		
Minimum ambient Insulation R-value: Heating cable space	. .		°F/°C (fror (fror in/cm (fror	n Step 3)		
Example: RaySol h Minimum ambient Insulation R-value: Heating cable space	design temperatu	re: 10°F (fror R-30 (froi	n Step 3) n Step 3)	Cable Spacing for	Comfort Floor Hea	ting)


Step Determine the heating cable spacing, layout and length

4.3 Determine the RaySol heating cable layout and length (see Fig. 14 on page 287)

4.4 Determine the maximum circuit length for the heating cable length and layout (see Table 8 on page 287)

Estimated heating cable length (ft/m) (from Step 4.3)	Maximum circuit length (ft/m) (from Table 8)	Number of circuits
Round the number of circuits to the ne	ext larger whole number	
Example: RaySol heating cables for co	omfort floor heating	
971 ft	275 ft	4 (rounded)
Estimated heating cable length required (from Step 4.3)	Maximum heating cable circuit length (from Table 8)	Number of circuits

4.7 Lay out the heating cable runs, circuits, and junction boxes

4.8 Record the circuit information

Step 5 Determine the elect	rical parameters	
Determine transformer load		
Calculate the circuit breaker lo	ad (CBL)	
$\left(\frac{1}{1}\right)$ X 0.8	x <u>Supply voltage</u>) / 1000	= Circuit breaker load (kW)
If the CBL is equal on all circuit	ts, calculate the transformer load as:	
Circuit breaker load (kW) X Num	ber of breakers	Total transformer load (kW)
If the CBL is NOT equal on all c	ircuits, calculate the transformer load as:	
$\overline{CBL_1}$ + $\overline{CBL_2}$ + $\overline{CBL_3}$ + $\overline{CBL_3}$		Total transformer load (kW)
Example: RaySol cables for he	at loss replacement and comfort floor heating	
Determine transformer load:		
, 30 A	208 V	Rounded to 5 kW
Circuit breaker rating X 0.8	3 x (208 V) / 1000 (Supply voltage) / 1000 (Supply voltage)	Circuit breaker load (kW)
Circuit brooker load (IM) X	4 hber of breakers	= 20 kW Total transformer load (kW)
	IDELOI DIEAKELS	Total transformer load (kw)
Step Select the connection	on kits and accessories	
RaySol connection kits	Quantity	
□ FTC-P		
□ FTC-XC		
□ FTC-HST		
RayClic-E		
Example: RaySol heating ca	bles for heat loss replacement	
✓ FTC-P (1 per cable run)	4	
Example: RaySol heating ca	bles for comfort floor heating	
✓ FTC-XC (1 per cable run)	4	
Step Z Select the control sy	ystem (see Table 16 on page 309)	
Control system	Quantity	
□ ECW-GF		
□ ECW-GF-DP		
MI-GROUND-KIT		
□ C910-485		

✓ RAYCHEM ACS-30

Example: RaySol heating cables for heat loss replacement

1

ACS-UIT2
ACS-PCM2-5
ProtoNode-RER
RTD10CS
RTD-200
RTD50

Example: RaySol heating	g cables for comfort floor heating	
✓ ECW-GF	1	
Step 🛙 Select the pow	er distribution (see Table 17 on page 315)	
Power Distribution and	Control Panels Quantity	
HTPG		

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

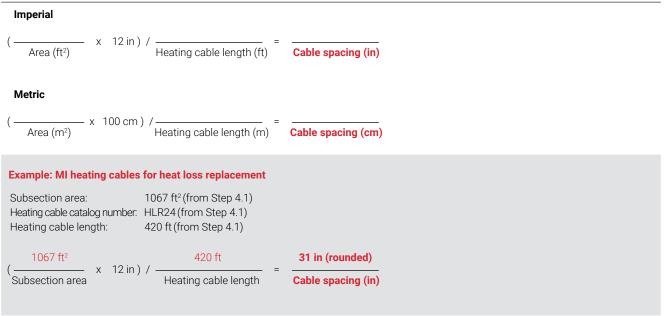
MI HEATING CABLE FLOOR HEATING DESIGN WORKSHEET

Heat Loss Replacement

Heat loss replacement (see Fig. 9) on page 279)	Minimum ambient design temperature	Insulation R-value	Supply voltage and phase	Control requirements
Side A (length) X Side B (width)	Heated area	°F/°C	ft2·°F·hr/Btu	Volts Phase	
(ft/m) (ft/m)	(ft²/m²)				
Example: MI heating cables for h replacement	eat loss				
80 ft 40 ft	3200 ft ²				
	Heated area (ft²/m²)	−10°F	R-20 (20 ft2·°F·hr/Btu)	208 V Three-phase	Electronic thermostat monitoring requested
Step 🖪 Determine the heating ca	able spacing, layo	ut and length			
4.1 Select heating cable (For desig	gn power, see Tabl	e 9 on page 291;	for heating cable	selection, see Tal	ble 10 on page 294.)
Determine the design power Heated area: Supply voltage and phase: Minimum ambient design tempera		(from S	Step 3)		
Design power: Determine the power requiremen			• •	1)	
Design power: Determine the power requiremen Single-phase supply x Design power Total area	nt: or Power		Step 3)	1)	
	nt: or Power	(from T	Step 3)	1)	
Design power: Determine the power requirement Single-phase supply Design power X Total area (W/ft ²) (W/m ²) subsection area Three-phase supply Design power X Subsection area	nt: or (ft ² /m ²) Power	(from T	Step 3)	1)	
Design power: Determine the power requirement Single-phase supply Design power (W/ft ²) (W/m ²) Three-phase supply Design power (W/ft ²) (W/m ²) X Subsection area Subsection area (M/ft ²) (W/m ²)	nt: or (ft ² /m ²) Power	required (W)	Step 3)	1)	
Design power: Determine the power requirement Single-phase supply Design power Total area (W/ft ²) (W/m ²) subsection area Three-phase supply Design power Subsection a (W/ft ²) (W/m ²) (ft ² /m ²) Select the heating cable	nt: or (ft ² /m ²) Power	required (W)	otep 3) Table 9 on page 29	1)	
Design power: Determine the power requirement Single-phase supply Design power (W/ft ²) (W/m ²) Three-phase supply Design power (W/ft ²) (W/m ²) X Design power (W/ft ²) (W/m ²) Subsection area Subsection area Subsection area (M/ft ²) (W/m ²) Select the heating cable Heating cable catalog number: Cable wattage:	it: or Power (ft²/m²) e area Power (for each su	required (from T w) (from Table 10 (from Table 10	on page 294) on page 294)	1)	
Design power: Determine the power requirement Single-phase supply Design power (W/ft ²) (W/m ²) Three-phase supply Design power X Subsection area	it: or Power (ft²/m²) e area Power (for each su	required (W) required ubsection) (W) (from Table 10	on page 294) on page 294) on page 294)	1)	

Step Determine the heating cable spacing, layout and length

Example: MI heating cables for heat loss replacement


Determine the design power	
Heated area:	3200 ft ² (from Step 3)
Supply voltage and phase:	208 V, three-phase (from Step 3)
Minimum ambient design temperature:	–10°F (from Step 3)
Insulation R-value:	R-20 (from Step 3)
Design power:	2.2 W/ft ² (from Table 9 on page 291)

Determine the power requirement:

Three-phase supply (see Fig.18)

2.2 W/ft ² 3200 ft ²	3 2347 W
Design power + Heated area	Number of subsections Power required
Heating cable catalog number:	HLR24 (from Table 10 on page 294)
Cable wattage:	5150 W (from Table 10 on page 294)
Cable voltage:	208 V (from Table 10 on page 294)
Heating cable length:	420 ft (from Table 10 on page 294)
Number of cables:	3 (one cable required for each subsection)

4.2 Determine the heating cable spacing

Advance Step 5 on on page 330.

Comfort Floor Heating

Comfort floor l	neating (see Fig. 10) on page 280)	Minimum ambient design temperature	Insulation R-value	Supply voltage and phase	Control requirements
=		=	°F/°C	<u> </u>	Volts	
Total area (ft²/m²)	Permanent fixture space (ft²/m²)	Heated area (ft²/m²)		ft2·°F·hr/Btu	Phase	
ixample: MI hea	ting cables for comf	ort floor heating				
34 ft	20 ft		680 ft ²			
Side A (see Figure 12)	x Side B (see Figure 12)	=	Total area			
680 ft ²	(22 ft² counter +	11 ft ² columns)	647 ft ²			
Total area	– Permanent fi (see Fig		Heated area			
Minimum ambien	t design temperature:	10°F				
Insulation R-valu	ie:	R-30				
Supply voltage a	ind phase:	208 V, single phas	e			

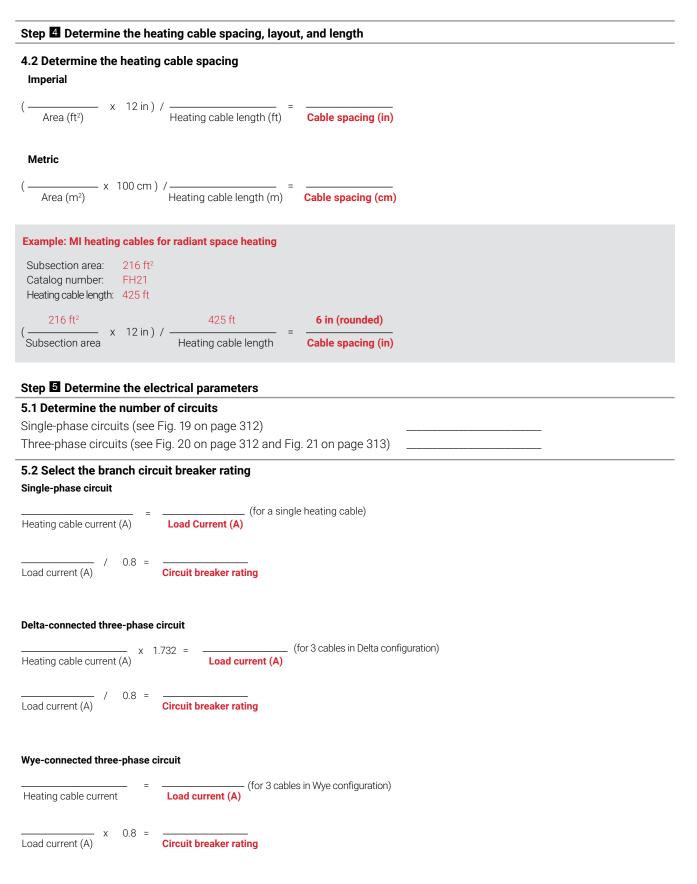
Step 4 Determine the heating cable spacing, layout, and length

	cable spacing,	layout, and length
4.1 Select the heating cable (se	e Table 11 on pa	age 297 and Table 12 on page 298)
Heated area:		(from Step 3)
Supply voltage and phase:		(from Step 3)
Subsection area:		
Heated area (ft²/m²) / Number	of subsections =	Subsection area (ft²/m²)
Heating cable catalog number:		(from Table 11 on page 297 or Table 12 on page 298)
Cable wattage:		(from Table 11 on page 297 or Table 12 on page 298)
Cable voltage:		(from Table 11 on page 297 or Table 12 on page 298)
Heating cable length:		(from Table 11 on page 297 or Table 12 on page 298)
Number of cables:		_
Example: MI heating cables for	comfort floor l	heating
Note: In this example, the subse	ections are equa	Il heated areas.
Supply voltage and phase:	208 V, single pl	hase (from Step 3)
Subsection area:	(see Fig. 17 on	page 296)
647 ft ²	2	324 ft ²
Heated area (ft²/m²) / Number	r of subsections	Subsection area (ft²/m²)
Heating cable catalog number:	FH21 (from Tal	ble 12 on page 298)
Cable wattage:	3390 W (from ⁻	Table 12 on page 298)
Cable voltage:	208 V (from Ta	able 12 on page 298)
Heating cable length:	425 ft (from Ta	able 12 on page 298)
Number of cables:	2 (one cable re	equired for each subsection)

Step 🖪 Determine the heating cable spacing, layou	ut, and length	
4.2 Determine the heating cable spacing Imperial		
(Cable spacing (in)	
Metric		
(Cable spacing (cm)	
Round to the nearest 1/2 in or 1cm.		
Example: MI heating cables for comfort floor heating		
Subsection area:324 ft²(from Step 4.1)Heating cable catalog number:FH21 (from Step 4.1)Heating cable length:425 ft (from Step 4.1)		
$\left(\frac{324 \text{ ft}^2}{\text{Area}} \times 12 \text{ in}\right) / \frac{425 \text{ ft}}{\text{Heating cable length}} =$	9 in (rounded)	
Area Heating cable length	Cable spacing (in)	

Advance Step 5 on page on page 330.

Radiant Space Heating


				Btu requirement (supplied by	Supply voltage	Control
adiant space	heating (see Fig. 11 c	on page 281)		engineer)	and phase	requirements
	=		_		Volts	
Total area (ft²/m²)	Permanent fixture space (ft²/m²)			Btu/hr	Phase	
ample: MI heat	ing cables for radiant	space heating				
34 ft	20 ft	_	680 ft ²			
Side A see Figure 13)	x Side B (see Figure 13)	=	Total area			
680 ft ²	(22 ft ² counter + 11	ft² columns)	647 ft ²			
Total area	Permanent fixtu (see Figure		Heated area			
Btu requirement:	34	800 Btu/hr (sup	oplied by engineer)			
Supply voltage a Control requirem		8 V, single phas ctronic thermo				

Step	4 Dete	rmine th	e heating	cable	spacing,	layout,	and	length
------	--------	----------	-----------	-------	----------	---------	-----	--------

4.1 Select the heating cable	
Heated area:	(from Step 3)
Supply voltage and phase:	(from Step 3)
Subsection area:	
$\frac{1}{1}$ Heated area (ft ² /m ²) / Number of subsections =	Subsection area (ft²/m²)
Btu requirement:	(from Step 3)
Power required:	
Btu/hr / 3.412 = Power requirement	
Power per subsection:	
Heating cable catalog number:	(from Table 11 on page 297 or Table 12 on page 298)
Cable wattage:	(from Table 11 on page 297 or Table 12 on page 298)
Cable voltage:	(from Table 11 on page 297 or Table 12 on page 298)
Heating cable length:	(from Table 11 on page 297 or Table 12 on page 298)
Number of cables:	

Example: MI heating cables for radiant space heating

Note: In this example, the subse	ections are equal heated areas.
Heated area:	647 ft ²
Supply voltage and phase:	208 V, single-phase (from Step 3)
Subsection area:	(see Fig. 18 on page 300)
647 ft ²	3 216 ft ²
Heated area (ft²/m²) Number	er of subsections Subsection area (ft²/m²)
Btu requirement:	34,800 Btu/hr (from Step 3)
Power required:	34,800 Btu/hr / 3.412 = 10200 W
Power per subsection:	10200 W / 3 = 3400 W
Heating cable catalog number:	FH21 (from Table 12 on page 298)
Cable wattage:	3390 W (from Table 12 on page 298)
Cable voltage:	208 V (from Table 12 on page 298)
Heating cable length:	425 ft (from Table 12 on page 298)
Number of cables:	3 (one cable required for each subsection)

	la - 4	
5.3 Determine the transformer I For cables of equal wattage	oad	
) (1000	
(x Cable (W) Number	of cables	Transformer load (kW)
When cable wattages are not equal		
$\left(\frac{1}{\text{Cable}_{1}(W)} + \frac{1}{\text{Cable}_{2}(W)} + \frac{1}{\text{Cable}_{3}(W)}\right)$	V) + Cable _N (W)	Total transformer load (kW
Example: MI heating cables for	heat loss replacement	
Heating cable catalog number:		
	24.8 A (from Table 10 on page 294)	
Delta-connected three-phase circuit		
24.8 A	43 A (rounded)	
$\frac{24.8 \text{ A}}{\text{Heating cable current}} \times 1.732 =$	Load current	
Circuit breaker size:	60 A breaker, 80% loading 48 A	
Number of circuit breakers:	1 (3-pole breaker)	
Cable power output:	5150 W (from Step 4.1)	
Number of cables:	3 (from Step 4.1)	
Transformer load:		
F1F0 W/		
, 5150 W 3	15.5 kW (rounded)	
(x XX X X X X X X X X X X X X X X X X X X X	$\frac{15.5 \text{ kW (rounded)}}{\text{Transformer load}}$	
(<u>S150 W</u> x <u>3</u> Cable power output Number of c	ables) / 1000 = 15.5 kW (rounded) Transformer load	
Example: MI heating cables for	comfort floor heating	
Example: MI heating cables for Heating cable catalog number:	comfort floor heating FH21 (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(3390 \text{ W} \times 2 \text{ Number of cable power output})$	$\frac{\text{comfort floor heating}}{\text{FH21 (from Step 4.1)}}$ $16.3 \text{ A (from Table 12 on page 298)}$ 16.3 A $25 \text{ A breaker, 80\% loading 20 \text{ A}}$ 2 $3390 \text{ W (from Step 4.1)}$ $2 (\text{from Step 4.1)}$ $2 (\text{from Step 4.1)}$ $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(\frac{3390 \text{ W}}{\text{Cable power output}} \times \frac{2}{\text{Number of cables}}$ Example: MI heating cables for	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: (<u>3390 W</u> <u>2</u> (<u>3390 W</u> <u>2</u> (<u>3390 W</u> <u>2</u>) (<u>3390 W</u> <u>3390 W</u> <u>2</u>) (<u>3390 W</u> <u>3390 W</u> <u>2</u>) (<u>3390 W</u> <u>390 W</u>	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating FH21 (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: (<u>3390 W</u> x <u>2</u> Cable power output x <u>2</u> Number of cables Example: MI heating cables for Heating cable catalog number: Heating cable current:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(\underbrace{3390 W}_{Cable power output} \times \underbrace{2}_{Number of collocs}_{Power ot put} \times \underbrace{2}_{Number of collocs}_{Power ot put}$ Heating cable catalog number: Heating cable current: Load current:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: (<u>3390 W</u> × <u>2</u> Cable power output × <u>2</u> Number of c Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) $\frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(3390 \text{ W} \times 2$ Cable power output $\times 2$ Number of cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size Number of circuit breakers:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) from Step 4.1) from Step 4.1 framsformer load radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 3	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(3390 \text{ W} \times 2)$ Cable power output X Number of c Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size Number of circuit breakers: Cable power output:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) from Step 4.1) from Step 4.1) fransformer load radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 3 3390 W (from Step 4.1)	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $(\frac{3390 \text{ W}}{\text{Cable power output}} \times \frac{2}{\text{Number of c}}$ Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size Number of circuit breakers: Cable power output: Number of cables:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) from Step 4.1) from Step 4.1 framsformer load radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 3	
Example: MI heating cables for Heating cable catalog number: Heating cable current: Load current: Circuit breaker size: Number of circuit breakers: Cable power output: Number of cables: Transformer load: $\left(\frac{3390 \text{ W}}{\text{Cable power output}} \times \frac{2}{\text{Number of cables for}}\right)$ Example: MI heating cables for Heating cable catalog number:	comfort floor heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 2 3390 W (from Step 4.1) 2 (from Step 4.1) (from Step 4.1) $= \frac{6.8 \text{ kW (rounded)}}{\text{Transformer load}}$ radiant space heating FH21 (from Step 4.1) 16.3 A (from Table 12 on page 298) 16.3 A 25 A breaker, 80% loading 20 A 3 3390 W (from Step 4.1) 3 (from Step 4.1) 3 (from Step 4.1)	

Step Step			
MI accessories		Quantity	
D1297TERM4	Cast aluminum junction box		
□ HARD-SPACER-GALV-25MM-25M	Galvanized steel prepunched strapping		
□ HARD-SPACER-SS-25MM-25M	Stainless steel prepunched strapping (use for Heat Loss Replacement applications)		
Example: MI heating cables for heat loss replacement			
✓ Junction Box	(supplied by contractor)		
✓ HARD-SPACER-SS-25MM-25M	16		
Example: MI heating cables for comfort floor heating			
✓ D1297TERM4	2		
✓ HARD-SPACER-GALV-25MM-25M	4		
Example: MI heating cables for radiant space heating			
✓ D1297TERM4	3		
✓ HARD-SPACER-GALV-25MM-25M	4		

Step **Z** Select the control system (see Table 16 on page 309)

Control system	Quantity			
ECW-GF				
ECW-GF-DP				
C 910-485				
ACS-UIT2				
ACS-PCM2-5				
ProtoNode-RER				
RTD10CS				
□ RTD-200				
RTD50				
Example: MI heating cables for heat loss replacement				
✓ RAYCHEM ACS-30	1			
Example: MI heating cables for comfort floor heating				
✓ ECW-GF	1			
Example: MI heating cables for radiant space heating				
✓ ECW-GF	1			
Step B Select the power distribution (see Table 17 on page 315)				
Power Distribution and Control Panels	Quantity			
□ HTPG				

Step Complete the Bill of Materials

Use the information recorded in this worksheet to complete the Bill of Materials.

HOT WATER TEMPERATURE MAINTENANCE – HWAT SYSTEM

This step-by-step design guide provides the tools necessary to design a nVent RAYCHEM HWAT Hot Water Temperature Maintenance System. For additional information, contact your nVent representative or call (800) 545-6258. Also, visit our web site at nVent.com.

CONTENTS

INTRODUCTION	
Typical Applications	
Approvals and Code Compliance	
Safety Guidelines	
Ground-Fault Protection	335
Design Requirements	335
SYSTEM OVERVIEW	
HWAT Electronic Controllers	
HWAT Heating Cables	
RayClic Connection Kits	337
DESIGN GUIDELINES	
Before You Begin	

INTRODUCTION

The RAYCHEM HWAT System is a hot water temperature maintenance system that utilizes an electronic controller, selfregulating electric heating cables, and an easy-to-install set of connection kits to provide commercial buildings with immediate hot water at the tap without the use of a water recirculation system.

Recirculation systems require the water heater temperature to be at least five degrees above the maintain temperature to compensate for the heat that is lost in the recirculation loop. With HWAT systems, the water in the supply pipe is maintained at a constant temperature along the entire length of the supply pipe so heating the water above the maintain temperature is not required. Recirculation systems also require return lines, pumps, and balancing valves, all of which are all unnecessary with HWAT.

A key component of the HWAT system is the HWAT controller. In addition to providing flexible temperature control, the controllers provide energy savings; a heat-up cycle that increases the water temperature in stagnant pipes; Building Management System (BMS) interface; alarm relay to signal power, temperature, or communication problems; a water heater sensor function; and nine predefined programs that can be customized by the user.

Typical Applications

The HWAT system is designed to be installed and operated in commercial buildings. Table 1 shows typical HWAT applications, desired maintain when HWAT-R2 heating cable is used in conjunction with the HWAT-ECO or ACS-30 controllers.

TABLE 1 TYPICAL HWAT APPLICATIONS

Application	Desired maintain temperature
Hospitals, nursing homes	105°F (40°C)
Schools, prisons, some hospitals	115°F (45°C)
Offices, hotels, apartments	125°F (50°C)
Kitchens, laundries	140°F (60°C)

This design guide covers standard HWAT applications which must meet the following conditions:

- · Installed on copper or rigid plastic pipes
- · Insulated in accordance with the insulation schedule shown in
- Powered at 208 V or 240 V. Can also be powered at 277 V when using the RAYCHEM ACS-30 controller
- Operated indoors where the ambient temperature is relatively constant and between 60°F (15°C) and 80°F (26°C)

If your application does not meet the above conditions, contact your nVent representative for custom design assistance.

Approvals and Code Compliance

The HWAT system with the HWAT-ECO or ACS-30 controller, is UL Listed and CSA Certified in nonhazardous locations.

Pipe Heating Cable HWAT heating cables are UL Listed, CSA Certified, and FM Approved when used

with the appropriate agency-approved Raychem components and accessories

HWAT is also in compliance with the following international and national codes:

- International Plumbing Code
- · International Building Code
- International Energy Conservation Code
- National Standard Plumbing Code
- National Electrical Code
- Canadian Electrical Code

Additionally, HWAT has numerous state and local code approvals. Contact your nVent representative for further information.

Safety Guidelines

The safety and reliability of any heat-tracing system depends on the quality of the products selected and on proper design, installation, and maintenance. Incorrect design, handling, installation, or maintenance of any of the system components can cause underheating or overheating of the pipe or damage to the heating cable system and may result in system failure, electric shock, or fire. The guidelines and instructions contained in this guide are important. Follow them carefully to minimize these risks and to ensure that the HWAT system performs reliably.

Pay special attention to safety warnings identified as \triangle warning.

Ground-Fault Protection

Design Requirements

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with nVent requirements, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit breakers.

To comply with warranty requirements, the design and installation of the HWAT system must be in accordance with this guide and the additional documents listed below:

- HWAT-ECO Installation and Operations Manual (H57340)
- HWAT System Installation and Operations Manual (H57548)
- RayClic Connection Kit Installation Instructions (H55388 and H55092)

Installation documents are shipped with the respective products and are also available via the nVent web site at nVent.com.

SYSTEM OVERVIEW

A complete HWAT system includes one or more HWAT-ECO or ACS-30 electronic controllers, HWAT-R2 heating cable, and RayClic connection kits. Fig. 1 illustrates a typical HWAT system. The key components of the system will be described in this section.

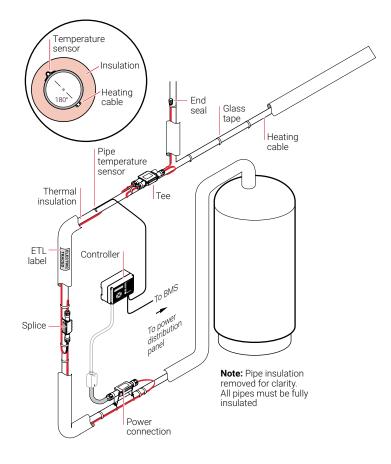
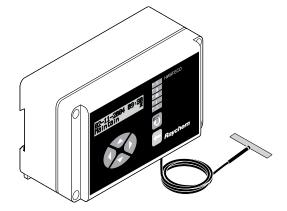



Fig. 1 Typical HWAT heating cable system

HWAT Electronic Controllers

The RAYCHEM HWAT-ECO is an electronic controller designed for use with a single circuit of HWAT-R2 self-regulating heating cable. For large hot water systems the ACS-30 distributed controller is available, refer to the ACS-30 data sheet (H58261) for more information. The HWAT-ECO provides a variety of features and control options, listed below, for your hot water temperature maintenance system.

Fig. 2 HWAT-ECO controller

- Flexible temperature control Selectable temperature control set points across the temperature range of the heating cable
- **Energy savings** Lowers the maintain temperature during low water usage hours and turns off the heating cable during peak water usage hours
- Heat-up cycle Increases the water temperature of a hot water system that is not in use
- Building Management System (BMS) interface Receives a DC voltage to determine the desired maintain temperature
- · Alarm Signals power, temperature, or communication problems
- Water heater sensor Monitors the supply pipe temperature, alarms on high temperature and turns off the system to prevent the possibility of scalding
- Master/slave function Allows one HWAT-ECO to control up to eight additional HWAT-ECO controllers
- Programmable settings Nine predefined programs that can be customized by the user

HWAT Heating Cables

HWAT-R2 self-regulating heating cables is installed on hot water supply pipes underneath standard pipe insulation. The heating cable adjusts its power output to reduce the effect of ambient temperature swings. The HWAT system provides continuous hot water temperature maintenance while eliminating the need for a recirculation system.

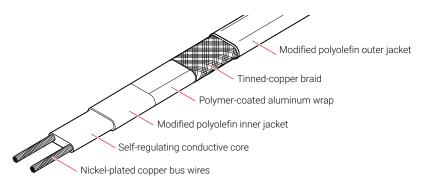


Fig. 3 HWAT-R2 heating cable

HWAT heating cables provide the following features:

- · Adjust power output to reduce the variations in water temperature
- · Can be cut to length, spliced, teed, and terminated in the field
- Designed for use with the HWAT-ECO or ACS-30 controller

RayClic Connection Kits

The RayClic connection system is a simple, fast, and reliable set of connection kits developed for use with HWAT self-regulating heating cables. RayClic connection kits reduce installation time, lowering the total installed cost of the HWAT system.

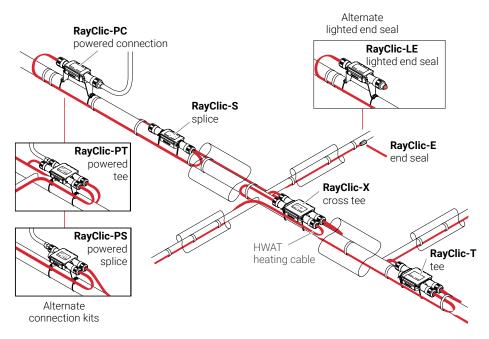


Fig. 4 RayClic connection kits

DESIGN GUIDELINES

This section describes the seven steps necessary to design an HWAT system:

- **1** Select the heating cable
- 2 Lay out the heating cable
- 3 Select connection kits and accessories
- 4 Finalize circuit length
- 5 Select control configurations
- 6 Select thermal insulation
- **7** Complete Bill of Materials

To assist you with the design, we will carry two design examples through this process. The example details are listed below each step in red.

Example 1

An elementary school where 115°F (46°C) is the desired maintain temperature and no heat-up cycle is required. Piping layout shows approximately 300 ft of pipe with two branches at the same location.

Example 2

A medium security prison where 115°F (46°C) is the desired maintain temperature and a 140°F (60°C) heat-up cycle is required. Piping layout shows approximately 700 ft of pipe with two branches at different locations.

Before You Begin

HWAT System Design

1. Select heating cable

heating cable

3. Select connection kits and accessories

4. Finalize circuit length

5. Select control

Materials

7.

configuration

6. Select insulation

Complete Bill of

2. Lay out the

Before you begin designing your HWAT system, gather this necessary information:

- Desired maintain temperature
- Indoor ambient temperature
- Supply voltage
- Piping layout
- Total pipe length
- Pipe diameters

Step Select heating cable

Use to select the appropriate system temperature setting. For more information on heat-up cycles, refer to "Expanded HWAT-ECO Electronic Controller Capabilities," H58449; or ACS-30 Programming Guide (H58692). HWAT-R2 heating cable will be used regardless of the controller you choose.

Record the following information:

- Desired maintain temperature (°F/°C)
- Indoor ambient temperature (°F/°C)
- Supply voltage (V)
- Heat-up cycle (Yes/No)
- Temperature (°F/°C)

Example: Heating Cable Selection	Example 1	Example 2
Desired maintain temperature	115°F (46°C)	115°F (46°C)
Ambient temperature	70°F (21°C)	70°F (21°C)
Supply voltage	208 V	208 V
Heat-up cycle required	No	Yes
Heat-up cycle temperature	n/a	140°F (60°C)

TABLE 2 HWAT SYSTEM TEMPERATURE RANGE

HWAT-R2	HWAT-ECO	ACS-30
Minimum maintain temperature	105°F (40°C)	100°F (38°C)
Maximum maintain temperature	140°F (60°C)	150°F (66°C)
Heat-up cycle*	>140°F (60°C)	>150°F (66°C)

Example

HWAT-R2

* For additional information on heat-up cycles, refer to "Expanded HWAT-ECO Electronic Controller Capabilities."

Heating Cable Selection

Heating	cable	selec	ted
ricating	oubic	00100	loa

⚠ WARNING Burn Hazard

Water temperatures above 120°F (50°C) can cause skin damage and pain. Be sure the correct insulation schedule is used and the HWAT-ECO or ACS-30 is programmed properly. Avoid exposure to water during heat-up cycles or from water systems with high maintain temperatures during normal operation.

H١	VAT System Design
1.	Select heating cable
2.	Lay out the heating cable
3.	Select connection kits and accessories
4.	Finalize circuit length
5.	Select control configuration
б.	Select insulation
7.	Complete Bill of Materials

Step **2** Lay out the heating cable

The piping layout of your building may require more than one HWAT circuit. To determine the number of circuits, group your piping by maintain temperature and location for convenience, a step that may require you to consult the plumbing and/or electrical engineer. Calculate the total length of pipe in each group, allowing one foot of heating cable for each foot of pipe. The length of heating cable in each group must not exceed the circuit lengths listed in .

In Step 4, you will calculate the additional cable required to install the connection kits. This will increase the total length of heating cable and may require the need for additional circuits.

TABLE 3 MAXIMUM CIRCUIT LENGTHS

	Circuit Lengths	
Circuit breaker size (Amps)	HWAT-R2 ft (m)	
15	250 (75)	
20	330 (100)	
30	500 (150)	

Note: Assumes a minimum water temperature of 50°F (10°C) at startup

Example: Lay out circuits	Example
HWAT heating cable selected	HWAT-R2
Length of pipe	700 ft
Number of circuits	2
Circuit breaker size	30 Amp
Number of circuits	2

A WARNING To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with nVent requirements, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional breakers.

H	VAT System Design
1.	Select heating cable
2.	Lay out the heating cable
З.	Select connection kits and accessories
4.	Finalize circuit length
5.	Select control configuration
6.	Select insulation
7.	Complete Bill of Materials

HWAT System Design Step Select connection kits and accessories

HWAT systems are approved and warranted only as a complete system. The appropriate RayClic connection kits must be used. Use to select the connection kits and accessories necessary for your HWAT system. Refer to the RayClic Connection System data sheet (H57545) in the Technical Data section for more information on the products.

The appropriate numbers of end seals are included with each connection kit.

TABLE 4 RAYCLIC CONNECTION KITS AND ACCESSORIES

Catalog number	Description	Quantity required	No. of end seals included
RayClic-PC	Power connection kit	One -PC, -PS, -PT required per circuit	1
RayClic-PS	Powered splice kit	One -PC, -PS, -PT required per circuit	2
RayClic-PT	Powered tee kit	One -PC, -PS, -PT required per circuit	3
RayClic-S	Splice kit	As required*	0
RayClic-X	Cross kit	As required	2
RayClic-T	Tee kit	As required	1
RayClic-E	End seal kit	As required for spares	1
GT-66	Glass tape	1 roll per 50 ft of pipe	n/a
ETL	Electric traced tape	1 label per 10 ft of pipe	n/a

* To minimize cable waste, nVent recommends that one RayClic-S be ordered for every 500 feet of cable.

Example: Select connection kits and accessories **Example**

Piping layout determined that the following	2 RayClic-PC
connection kits and accessories are required.	2 RayClic-T
	14 GT-66
	70 ETL

HWAT System Design

	.,
1.	Select heating cable
2.	Lay out the heating cable
З.	Select connection kits and accessories
4.	Finalize circuit length
5.	Select control configuration
6.	Select insulation
7.	Complete Bill of

Materials

Step 4 Finalize circuit length

Additional cable is required for future access at each connection kit. Add the additional cable, as detailed in , to the estimated circuit lengths from Step 2. Confirm that the maximum lengths shown in have not been exceeded. If your circuit lengths are greater than those shown, reconfigure your heating cable layout to allow for additional circuits.

TABLE 5 ADDITIONAL CABLE REQUIRED FOR EACH CONNECTION KIT

Connection kit name	No. of cable connections/kit	Cable conne ft (m)	length/ ction		able length e loop)
RayClic-PC	1	2.0	(0.6)	2.0	(0.6)
RayClic-S	2	1.0	(0.3)	2.0	(0.6)
RayClic-T	3	1.0	(0.3)	3.0	(0.9)
RayClic-X	4	1.0	(0.3)	4.0	(1.2)
RayClic-PS	2	1.5	(0.5)	3.0	(0.9)
RayClic-PT	3	1.3	(0.4)	4.0	(1.2)
RayClic-E	1	n/a		n/a	

Example: Finalize circuit length	Example		
	Circuit 1*	Circuit 2*	
Length of heating cable per circuit	350 ft	350 ft	
Additional cable required			
RayClic-PC	2 ft	2 ft	
RayClic-T	3 ft	3 ft	
RayClic-X	n/a	n/a	
Total length of heating cable required	355 ft	355 ft	

* In this example, the circuits were evenly divided. Equal circuit lengths are not required.

HWAT System Design Step 5 Select control configuration

For single circuit applications, choose the HWAT-ECO controller. For multi-circuit applications, choose the ACS-30 controller.

Example: Select control method	Example 1	Example 2
Туре	Individual circuit	Multi-circuit
Number of circuits	1	up to 260
Controller	HWAT-ECO	ACS-30

н١	VAT System Design
1.	Select heating cable
2.	Lay out the heating cable
З.	Select connection kits and accessories
4.	Finalize circuit length
5.	Select control configuration
б.	Select insulation
7.	Complete Bill of Materials

1. Select heating cable

 Lay out the heating cable
 Select connection kits and accessories

4. Finalize circuit

5. Select control

configuration

 Select insulation
 Complete Bill of Materials

length

Step Select Insulation

Select the size of thermal insulation from Table 6. You will need to know the length and diameter of each pipe used in your application.

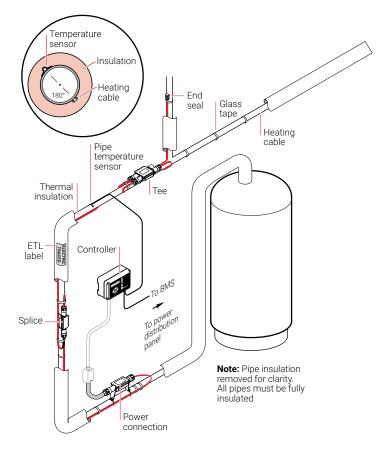
For pipes 1 1/4 inches and smaller, use insulation that is oversized by 1/4 inch to allow room for insulating over the heating cables. Table 6 specifies IPS (Iron Pipe Size) insulation, which has a greater inner diameter than CTS (Copper Tube Size) insulation.

For pipes 3 inches and larger, the thickness of insulation can either be equal to the pipe diameter with a single heating cable or 1/3 the pipe diameter with two heating cables. For example, a 6 inch pipe with 6 inches of insulation and one run of heating cable is equivalent to a 6 inch pipe with 2 inches of insulation and two runs of heating cable.

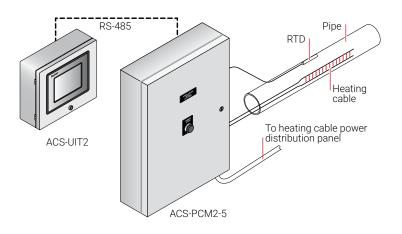
Copper pipe size (in)	IPS insulation size (in)	Insulation thickness (in)
1/2	3/4	1/2
3/4	1	1
1	11/4	1
1 1/4	1 1/2	1 1/2
1 1/2	1 1/2	1 1/2
2	2	2
2 1/2	2 1/2	2 1/2
3	3	3

TABLE 6 FIBERGLASS INSULATION SELECTION

Note: For pipes 3 inches and larger, the thickness of insulation can be equal to the pipe diameter with one run of heating cable or 1/3 the pipe diameter with two runs of heating cable.


Example: Select Insulation

SS


HWAT System Design Step 🖬 Complete Bill of Materials

1.	Select heating cable
2.	Lay out the heating cable
З.	Select connection kits and accessories
4.	Finalize circuit length
5.	Select control configuration
6.	Select insulation
7.	Complete Bill of Materials

You are now ready to compile a Bill of Materials. Using the design results, detail each item as shown in Fig. 6 below. Fig. 5 illustrates a complete typical HWAT system.

Fig. 5 Typical HWAT heating cable system

Fig. 6 Typical configuration for the RAYCHEM ACS-30 system

TABLE 7 BILL OF MATERIALS (EXAMPLE)

Description	Catalog number	Quantity
HWAT heating cable	HWAT-R2	706 ft
Power connection kit	RayClic-PC	2
Tee connection kit	RayClic-T	2
Controller	HWAT-ECO	2
Attachment tape	GT-66	12 rolls
Labels	ETL	70

TECHNICAL DATA SHEETS

This section provides individual technical data sheets for all of the nVent products. Each data sheet is also available in .pdf format on our web site at nVent.com.

CONTENTS

PIPE FREEZE AND FLOW MAINTENANCE

XL-Trace Self-regulating heating cable
ROOF & GUTTER DE-ICING
RIM System Roof Ice Melt system 351 RIM2 System Roof Ice Melt system 355 RIM DrainTrace Roof Ice Melt system 359 IceStop Roof and gutter de-icing heating cable 360
SURFACE SNOW MELTING
ElectroMelt Self-regulating heating cable
Suspension Mounted Heating Suspension mounted heating system
FREEZER FROST HEAVE PREVENTION AND HEAT LOSS REPLACEMENT
RaySol Self-regulating heating cable
LSZH jacketed, copper and Alloy 825 sheathed MI cable
sheathed MI cable
MULTI-APPLICATION
MI Heating Cable for Commercial and Industrial Applications Copper and LSZH Copper Sheathed MI Cable
FLOOR HEATING
Nuheat Mat Custom and standard mat system

HOT WATER TEMPERATURE MAINTENANCE

HWAT	Self-regulating heating	cable	408

ADVANCED CONTROLS

ACS-30 Multipoint commercial heat-tracing system	
C910-485 Series Single-point heat-tracing control system	417
HWAT-ECO Electronic control system	421

POWER DISTRIBUTION PANELS

HTPG Heat-tracing power distribution panel	.424
SMPG1 Snow melting and de-icing power distribution and control panel	.427
SMPG3 Snow melting and de-icing power distribution and control panel	431
HECS Roof & gutter de-icing power distribution and control panel	436

SNOW MELTING AND GUTTER CONTROLS

APS-3C Snow melting and gutter de-icing controller	438
APS-4C Snow melting and gutter de-icing controller	
with ground-fault protection	441
SC-40C Snow and ice melting satellite contactor	
PD Pro Snow and ice melting controller	447
GF Pro Snow and ice melting controller	449
CIT-1, GIT-1, SIT-6E Snow sensor, gutter sensor, pavement sensor	451

ELECTRONIC AND MECHANICAL THERMOSTATS

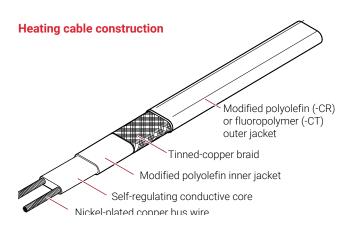
ECW-GF Ambient, pipe and slab electronic thermostat	453
EC-TS Ambient, pipe and slab electronic thermostat	457
AMC-F5 Fixed set point freeze protection mechanical thermostat	459
AMC-1A Ambient-sensing mechanical thermostat	460
AMC-1B Line-sensing mechanical thermostat	461

CONTROL AND MONITORING ACCESSORIES

ProtoNode Multi-p	rotocol device server	
RMM2 / RMM2-4X	Remote temperature monitoring module	

TEMPERATURE SENSORS

.467
468
469


CONNECTION KITS AND ACCESSORIES

ayClic Connection Kits and Accessories
For XL-Trace, IceStop and HWAT self-regulating heating cables
TC Heat-Shrinkable Connection Kits
For XL-Trace, IceStop and RaySol self-regulating heating cables
lectroMelt Connection Kits and Accessories
For ElectroMelt self-regulating heating cables
CB Cable Cover Bracket
For roof & gutter de-icing systems478

XL-TRACE

SELF-REGULATING HEATING CABLE FOR PIPE FREEZE PROTECTION AND FLOW MAINTENANCE

PRODUCT OVERVIEW

nVent RAYCHEM XL-Trace is designed for pipe freeze protection and flow maintenance in the following applications:

- Freeze protection of general water piping (aboveground and buried)
- Freeze protection of fire sprinkler system piping, including sprinklers
- Flow maintenance of greasy waste lines (aboveground and buried)
- Flow maintenance of fuel lines (aboveground)

The heating element in the XL-Trace heating cable consists of a continuous core of conductive polymer extruded between two copper bus wires. The XL-Trace heating cable regulates its power output in response to pipe temperature changes. This self-regulating technology allows XL-Trace heating cable to be overlapped or installed on plastic pipes without overheating.

Low total installed cost

The XL-Trace heating cable's parallel circuitry allows it to be cut to the exact length required, with no wasted cable. Its flexibility allows it to be wrapped around complex fittings and valves.

All of these characteristics simplify and streamline the design of a heat-tracing system. Installation is quick and simple.

Low total operating cost

Building operators are assured of optimal energy efficiency and low maintenance costs when an XL-Trace system is specified.

The same features that make an XL-Trace system easy to install the first time also simplify additions or changes to the system during building renovations.

For additional information, contact your nVent representative or call (800) 545-6258.

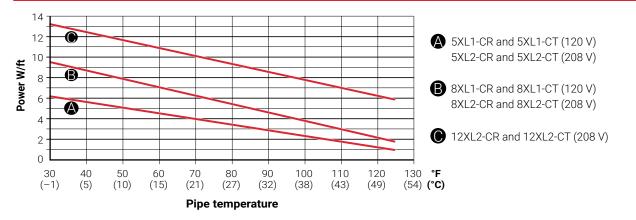
Catalog Number	5XL1-CR/CT	5XL2-CR/CT	8XL1-CR/CT	8XL2-CR/CT	12XL2-CR/CT
Voltage	120 V	208-277 V	120 V	208-277 V	208-277 V
Maximum Operating Temperature	150°F (65°C)				
Maximum Exposure Temperature	150°F (65°C)	150°F (65°C)	150°F (65°C)	150°F (65°C)	185°F ¹ (85°C) ¹
Minimum Installation Temperature	0°F (−18°C)	0°F (-18°C)	0°F (-18°C)	0°F (-18°C)	0°F (-18°C)
Minimum Bend Radius	1/2 in (12 mm)				

1 When the design requires 185°F (85°C) exposure temperature, all connections must be installed off the pipe.

XL-TRACE MAXIMUM CIRCUIT LENGTH IN FEET

		40°F /	110°F Ma	intain*								
Start-up	СВ	5XL1	8XL1		5XL2			8XL2 12XL2				
temperature (°F)	size (A)	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-20°F	15	101	76	174	178	183	131	138	146	111	114	117
	20	134	101	232	237	245	175	184	194	148	151	156
	30	201	151	349	356	367	262	276	291	223	227	234
	40	270	201	465	474	478	349	368	388	297	303	312
0°F	15	115	86	199	203	209	149	157	166	120	122	126
	20	153	115	265	271	279	199	209	221	160	163	168
	30	230	172	398	406	419	298	314	331	239	244	252
	40	270	210	470	490	530	370/ <mark>399</mark>	390/ <mark>420</mark>	420/443	319	326	336
20°F	15	134	100	232	237	244	173	182	192	126	129	133
	20	178	133	309	315	325	231	243	257	169	172	177
	30	270	200	464	473	488	346	365	385	253	258	266
	40	270	210	470	490	530	370/ <mark>462</mark>	390/ <mark>486</mark>	420/ <mark>513</mark>	340/ <mark>349</mark>	344	355
40°F	15	160	119	278	283	292	206	217	229	142	145	150
	20	214	159	370	378	390	275	290	306	190	194	200
	30	270	210	470	490	530	370/ <mark>416</mark>	390/ <mark>438</mark>	420/ <mark>462</mark>	285	291	300
	40	270	210	470	490	530	370/ <mark>554</mark>	390/ <mark>584</mark>	420/ <mark>616</mark>	340/ <mark>398</mark>	360/ <mark>406</mark>	380/ <mark>41</mark> 9
50°F	15	-	-	-	-	-	228	240	254	152	155	160
(buried)	20	-	-	-	-	-	304	320	338	203	207	213
	30	-	-	-	-	-	457	481	507	304	310	320
	40	-	-	-	-	-	609	641	676	405	414	427
65°F	15	-	-	-	-	-	272	286	302	169	172	178
(indoors grease)	20	-	-	-	-	-	362	381	402	225	230	237
	30	-	-	-	-	-	543	572	603	338	345	356
	40	-	-	-	-	-	610	660	720	430	460	490

* When maximum circuit length is listed in:
black type, the value is for applications with a 40°F maintain
red type, the value is for applications with a 110°F maintain


MAXIMUM CIRCUIT LENGTH IN METERS

		4°C / 4	3°C Mair	itain*								
Start-up		5XL1	8XL1		5XL2		8XL2			12XL2		
temperature (°C)	CB size (A)	120 V	120 V	208 V	240 V	277 V	208 V	240 V	277 V	208 V	240 V	277 V
-29°C	15	31	23	53	54	56	40	42	44	34	35	36
	20	41	31	71	72	75	53	56	59	45	46	48
	30	61	46	106	108	112	80	84	89	68	69	71
	40	82	61	142	145	149	106	112	118	90	92	95
-18°C	15	35	26	61	62	64	45	48	51	36	37	38
	20	47	35	81	83	85	61	64	67	49	50	51
	30	70	52	121	124	128	91	96	101	73	74	77
	40	82	64	143	149	162	113/122	119/128	128/135	97	99	102
−7°C	15	41	31	71	72	74	53	56	59	39	39	41
	20	54	41	94	96	99	70	74	78	51 52 54		
	30	82	61	141	144	149	106	111	117	77	79	81
	40	82	64	143	149	162	113/141	119/148	128/156	104/106	105	108
4°C	15	49	36	85	86	89	63	66	70	43	44	46
	20	65	48	113	115	119	84	88	93	58	59	61
	30	82	64	143	149	162	113/127	119/134	128/1 <mark>4</mark> 1	87	89	91
	40	82	64	143	149	162	113/169	119/178	128/188	104/121	110/124	116/128
10°C	15	-	-	-	-	_	70	73	77	46	47	49
(buried grease)	20	-	-	-	-	-	93	98	103	62	63	65
	30	-	-	-	-	-	139	147	155	93	95	98
	40	-	-	-	-	-	186	195	206	124	126	130
18°C	15	-	-	-	-	-	83	87	92	52	53	54
(indoors grease)	20	-	-	-	-	-	110	116	123	69	70	72
	30	-	-	-	-	-	166	174	184	103	105	108
	40	-	-	-	-	-	186	201	220	131	140	149

*When maximum circuit length is listed in:

black type, the value is for applications with a 40°F maintain
red type, the value is for applications with a 110°F maintain

NOMINAL POWER OUTPUT ON METAL PIPES AT 120 V/208 V

16 AWG nickel-plated copper

BRAID/OUTER JACKET

Tinned-copper braid with modified polyolefin jacket (-CR) or fluoropolymer jacket (-CT).

DIMENSIONS

	5XL and 8XL	12XL	
Maximum width	0.56 in (14 mm)	0.62 in (16 mm)	
Maximum thickness	0.24 in (6 mm)	0.24 in (6 mm)	
NOMINAL WEIGHT			
	92 lb/1000 ft	104 lb/1000 ft	

CONNECTION KITS

RAYCHEM RayClic or FTC connection kits must be used with XL-Trace heating cables. Refer to the Pipe Freeze Protection and Flow Maintenance Design Guide (H55838) for proper connection kit selection.

APPROVALS

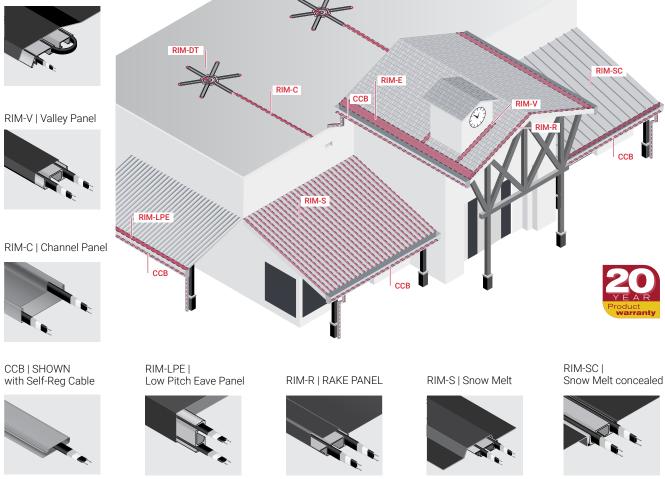
Refer to the Pipe Freeze Protection and Flow Maintenance Design Guide (H55838) and the Fire Sprinkler Freeze Protections Design Guide (H58489) for specific product approval details

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

RIM

ROOF ICE MELT (RIM) SYSTEM FOR CONCEALED ROOF & GUTTER DE-ICING


PRODUCT OVERVIEW

The nVent RAYCHEM RIM System is our premier engineered, aesthetically elegant, concealed roof & gutter de-icing solution to prevent ice dams, icicles, and frozen gutter problems. The RIM system mechanically protects the selfregulating cable, provides high power output along the entire roof edge, and is ideal for new construction or renovation of buildings for all snow load areas, for residential or commercial buildings.

RIM System panels secure the heating cables in a fixed heat transfer position. They are specifically designed for eaves, valleys, channels, rakes and flat roof sections and come in a variety of aesthetically pleasing colors and finishes as standard or custom options to meet any project need. This maintenance-free RIM system embeds multiple runs of high wattage IceStop self-regulating heating cable offering the highest performing heating system with the most efficient heat transfer and cable protection. It is designed for heavy snow load areas with roof snow accumulation over 15 inches, and annual snowfall of over 100 inches. This data sheet will detail this system.

For color options with Aluminum cover panel please refer to RIM color guide H59379.

RIM-E | Eave Panel

RIM PANEL SYSTEMS

Catalog number	Part number	Description
RIM-E	F6231-**-**-*	RIM Eave System is designed to mount on the roof eave, to minimize the formation of ice dams and icicles. RIM-Eave panels embed 3 runs of self-regulating heating cable for high power output requirements.
		Available in Aluminum and Copper cover panels Weight: 2,834.75 lb/1000 ft
RIM-LPE	F6248-**-**-*	RIM Eave System, Low Pitch is specifically designed for integration with metal roof systems and for applications involving roof pitch less than 3:12. RIM-LPE panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 2,190,75 lb/1000 ft
RIM-V	F6281-**-**-*	RIM Valley System is designed to mount in the roof valleys to minimize the formation of ice dams and icicles in roof valleys. RIM-V panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 819.50 lb/1000 ft
RIM-R	F6261-**-**-*	RIM Rake System is designed to mount on the roof rake and direct the snow melt towards the eave. RIM-R panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 1,264.75 lb/1000 ft
RIM-C	F6221-**-**-*	RIM Channel System is designed to mount on the roof and provide a heated channel for snow melt to flow from one section of the roof to the other, usually a drain or eave. RIM2-C panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 750.75 lb/1000 ft
RIM-S	F6271-**-**-*	RIM Snowmelt System is designed to mount on the roof and is used to create wider snow melt paths. This panel system can be used to melt snow on roof sections between standing seams, or provide melt paths to access sections of roof. RIM-S panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 1,509.75 lb/1000 ft
RIM-SC	F6275-**-**-*	RIM Snowmelt System, Concealed is designed to mount under a metal roof surface so that the entire RIM panel is concealed. RIM-SC panels embed 2 runs of self-regulating heating cable.
		Weight: 1,155.75 lb/1000 ft

HEATING CABLES

Catalog number	Part number	Description
GM-1X	832100-000	IceStop Self-regulating heating cable, 120 V
GM-2X	446105-000	IceStop Self-regulating heating cable, 208-277 V

CONNECTION KITS & ACCESSORIES

Catalog number	Part number	Description
RIM-EPSC	R6211-**-**	RIM Eave Panel Splice Cover is designed to cover the joints between RIM-E panels on the roof.
		Available in Aluminum and Copper cover panels
RIM-EPEB	R6015-23	RIM Eave Panel End Bracket, Black is designed to cover the ends of RIM-E panels on the roof.
WPCK-R	F1012	WPCK-R is a CSA Certified and UL Listed power connection kit for RIM system. Materials for one power connection kit and end seal are provided.
WHES	F1009	WHES is a CSA Certified and UL Listed end seal kit for RIM system. Materials for end seal are provided.
WSTK	P000000229	WSTK is a CSA Certified and UL Listed splice/tee/end seal kit for RIM system. Materials for one splice or tee and end seal are provided.
JB-55	F0300	JB-55 is a CSA Certified and UL Listed junction box that can be used for a power connection kit for RIM system in conjunction with WPCK-R. Junction box dimensions 5"x5"
JB-75	F0303	JB-75 is a CSA Certified and UL Listed junction box that can be used for a power connection kit for RIM system in conjunction with WPCK-R. JB-75 allows powering up to 3 cables (powered tee). Junction box dimensions 7"x5"
DSH	B0402	Downspout hanger (DSH) is used to protect the heating cable from sharp edges at the corner of gutter and downspout.
HFF	F0110	Heater Feedthrough Fitting (HFF) is used as a gland kit when the heating cable penetrates the gutter or downspout.
ССВ	R6201-**-**	Cable Cover Bracket is designed to mount on roofs or gutters and embeds one or two runs of self-regulating heating cable. It enhances the heat transfer from the heating cable to the snow, creating larger drain paths. Available in Aluminum and Copper cover panels Weight: 17 lb/1000 ft
RIM Adhesive/Sealant	B1626	RIM Adhesive/Sealant is a silicone sealant used to attach selected RIM systems to the underlying surface. Please refer to appropriate installation instructions included with the system.10.3 oz. Tube

The IceStop heating cables are UL Listed and CSA Certified only when used with the appropriate agency-approved nVent connection kits and accessories. For approvals information, refer to the IceStop heating cable data sheet H56428.

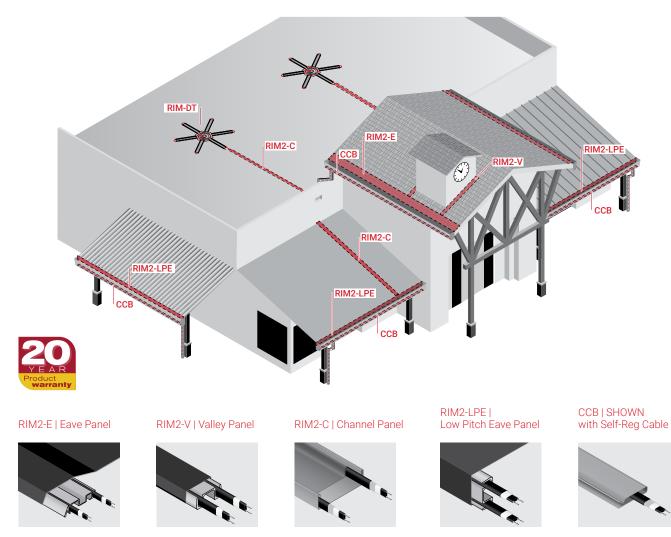
DESIGN AND INSTALLATION

For proper design and installation of a nVent RAYCHEM Roof Ice Melt (RIM) system, use the appropriate product design guide (H59561) and the installation instructions included with the system.

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

RIM2


ROOF ICE MELT (RIM2) SYSTEM FOR CONCEALED ROOF & GUTTER DE-ICING

PRODUCT OVERVIEW

The nVent RAYCHEM RIM System is our premier engineered, aesthetically elegant, concealed roof & gutter de-icing solution to prevent ice dams, icicles, and frozen gutter problems. The RIM system mechanically protects the selfregulating cable, provides high power output along the entire roof edge, and is ideal for new construction or renovation of buildings for all snow load areas, for residential or commercial buildings.

nVent RAYCHEM RIM2 System panels secure the heating cables in a fixed heat transfer position. They are specifically designed for eaves, valleys, channels, rakes and flat roof sections and come in a variety of aesthetically pleasing colors and finishes as standard or custom options to meet any project need. This maintenance-free RIM2 panel system embeds 2 runs of energy-efficient WFP self-regulating heating cable and is designed for light to moderate snow load areas with roof snow accumulation under 15 inches, and annual snowfall of under 100 inches. This data sheet will detail this system.

For color options with Aluminum cover panel please refer to RIM color guide H59379.

Catalog number	Part number	Description
RIM2-E	F6237-**-*	RIM2 Eave System is designed to mount on the roof eave, to minimize the formation of ice dams and icicles. RIM2-Eave panels embed 2 runs of self-regulating heating cable for a more energy efficient solution.
		Available in Aluminum and Copper cover panels Weight: 2,035.75 lb/1000 ft
RIM2-LPE	F6258-**-*	RIM2 Eave System, Low Pitch is specifically designed for integration with metal roof systems and for applications involving roof pitch of less than 3:12. RIM2-LPE uses two runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 1,696.75 lb/1000 ft
RIM2-V	F6287-**-*	RIM2 Valley System is designed to mount in the roof valleys to minimize the formation of ice dams and icicles in roof valleys. RIM2-V panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 677.50 lb/1000 ft
RIM2-C	F6222-**-*	RIM2 Channel System is designed to mount on the roof and provide a heated channel for the snow melt to flow from one section of the roof to the other, usually a drain or eave. RIM2-C panels embed 2 runs of self-regulating heating cable.
		Available in Aluminum and Copper cover panels Weight: 728.75 lb/1000 ft

HEATING CABLES

Catalog number	Part number	Description
WFP-612	P000000222	WFP self-regulating heating cable, 120 V
WFP-622	P000000223	WFP self-regulating heating cable, 240 V

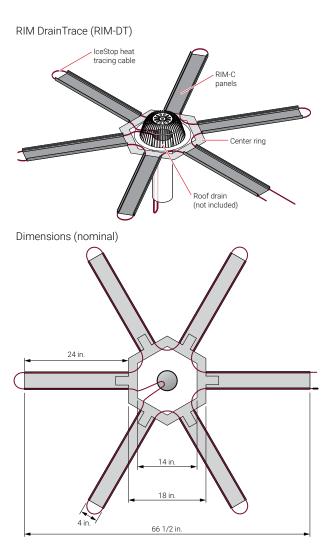
CONNECTION KITS & ACCESSORIES

Catalog number	Part number	Description
RIM2-EPSC	R6209-**-**v	RIM2 Eave Panel Splice Cover is designed to cover the joints between RIM2-E panels on the roof. Available in Aluminum and Copper cover panels
RIM2-EPEB	R6016-23	RIM2 Eave Panel End Bracket, Black is designed to cover the ends of RIM2-E panels on the roof.
WPCK-R	F1012	WPCK-R is a CSA Certified and UL Listed power connection kit for RIM system. Materials for one power connection kit and end seal are provided.
WHES	F1009	WHES is a CSA Certified and UL Listed end seal kit for RIM system. Materials for end seal are provided.
WSTK	P000000229	WSTK is a CSA Certified and UL Listed splice/tee/end seal kit for RIM system. Materials for one splice or tee and end seal are provided.
JB-55	F0300	JB-55 is a CSA Certified and UL Listed junction box that can be used for a power connection kit for RIM system in conjunction with WPCK-R. Junction box dimensions 5"x5"
JB-75	F0303	JB-75 is a CSA Certified and UL Listed junction box that can be used for a power connection kit for RIM system in conjunction with WPCK-R. JB-75 allows powering up to 3 cables (powered tee). Junction box dimensions 7"x5"
DSH	B0402	Downspout hanger (DSH) is used to protect the heating cable from sharp edges at the corner of gutter and downspout.
HFF DSH	F0110	Heater Feedthrough Fitting (HFF) is used as a gland kit when the heating cable penetrates the gutter or downspout.
CCB	R6201-**-**	Cable Cover Bracket is designed to mount on roofs or gutters and embeds one or two runs of self-regulating heating cable. It enhances the heat transfer from the heating cable to the snow, creating larger drain paths. Available in Aluminum and Copper cover panels Weight: 17 lb/1000 ft
RIM Adhesive/ Sealant	B1626	RIM Adhesive/Sealant is a silicone sealant used to attach selected RIM systems to the underlying surface. Please refer to appropriate installation instructions included with the system. 10.3 oz. Tube

Technical Data Sheets The IceStop heating cables are UL Listed and CSA Certified only when used with the appropriate agency-approved nVent connection kits and accessories. For approvals information, refer to the IceStop heating cable data sheet H56428.

DESIGN AND INSTALLATION

For proper design and installation of a Roof Ice Melt (RIM) system, use the appropriate product design guide (H59561) and the installation instructions included with the system.


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

RIM-DT

RIM-DRAINTRACE

SPECIFICATION

System Fully snap-fit system with no need for rivets/ screws/ nails/ adhesive in the field and with minimal number of assembly steps required in the field Kynar[®] painted aluminum Material Selection Color Selection Matte Black Contents Aluminum center ring with tabs, RIM-C channel panels, IceStop heat tracing cable, WPCK-R Heat Trace Cable Supplied: GM-1X for 120 V applications GM-2X for 208-277 V applications Dimensions Inner size of center ring: 14 inches

Channel panel length: 24 inches

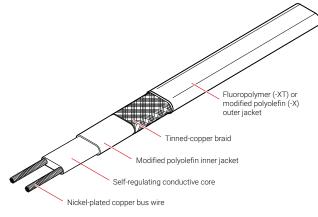
GENERAL INFORMATION

nVent RAYCHEM RIM-DRAINTRACE (RIM-DT) system is a turnkey roof ice melt unit for roof drains. It consists of a central aluminum ring which could go around up to14 inch diameter roof drain. The ring consists of six tabs that can be inserted into the RIM-C channel panels, each 2 feet long. Fifty feet of RAYCHEM IceStop heating cable is provided for routing to and from the channel panels and the drain and to connect to a power connection kit within 10 feet of the drain. A WPCK-R connection kit is included with the system for power and end terminations.

Reliable System:

RIM-DT efficiently transfers the heat to the snow and keeps the area around the roof drains snow free. The RIM-C channel panels mechanically protect the heat tracing cable and create melt channels for the snow melt to flow into the drain.

Lower Total Installed Cost:


RIM-DT parts snap into each another eliminating the need for any field riveting, roof penetrations, or complex cable layouts-thus, reducing the field installation time. The IceStop heating cable's parallel circuitry allows it to be cut to the exact length required in the field thereby eliminating pre-engineering. The flexibility of heating cable makes the installation is guick and simple

ICESTOP

SELF-REGULATING ROOF AND GUTTER DE-ICING HEATING CABLE

Heating cable construction

PRODUCT OVERVIEW

nVent RAYCHEM IceStop is a roof and gutter de-icing system that provides drain paths for the following applications:

- Roofs made from standard roofing materials, including shake, shingle, rubber, tar, wood, metal, and plastic.
- Gutters made from standard materials, including metal, plastic, and wood.
- Downspouts made from standard materials, including metal and plastic.

The heating element in the lceStop heating cable consists of a continuous core of conductive polymer extruded between two copper bus wires. As current flows through the core, the lceStop heating cable regulates its own heat output in response to ambient conditions.

This self-regulating feature eliminates hot spots and results in better temperature control to protect roof and gutter materials.

The IceStop heating cable is available with a fluoropolymer outer jacket (-XT) that provides maximum abrasion, chemical, and mechanical resistance; or a polyolefin outer jacket (-X) that is more economical for less demanding applications.

Low installed cost

The IceStop heating cable's parallel circuitry allows it to be cut to the exact length required, with no wasted cable.

All of these characteristics simplify and streamline the design of a roof and gutter de-icing system. Installation is quick and simple. The same features that make an IceStop system easy to install the first time also simplify additions or changes to the system during building renovations.

CATALOG NUMBER	
GM-1XT and GM-1X	GM-2XT and GM-2X
POWER OUTPUT (NOMINAL)	
12 W/ft (39 W/m) in ice or snow	12 W/ft (39 W/m) in ice or snow
VOLTAGE	
120 Vac	208–277 Vac
MINIMUM INSTALLATION TEMPERATURE	
0°F (-18°C)	0°F (-18°C)
MINIMUM BEND RADIUS	
5/8 in (16 mm)	5/8 in (16 mm)

MAXIMUM CIRCUIT LENGTH IN FEET (METERS)

Start-up	Circuit breaker size								
temperature	15 A	20 A	30 A	40 A*					
32°F (0°C)	100 (30)	135 (41)	200 (61)	_					
20°F (-7°C)	95 (29)	125 (38)	185 (56)	200 (61)*					
0°F (-18°C)	80 (24)	100 (30)	155 (47)	200 (61)*					
32°F (0°C)	190 (58)	250 (76)	380 (116)	—					
20°F (-7°C)	180 (55)	235 (72)	355 (108)	380 (116)*					
0°F (-18°C)	145 (44)	195 (59)	290 (88)	380 (116)*					
32°F (0°C)	200 (61)	265 (81)	400 (122)	_					
20°F (-7°C)	190 (58)	250 (76)	370 (113)	400 (122)*					
0°F (-18°C)	155 (47)	205 (62)	305 (93)	400 (122)*					
32°F (0°C)	215 (66)	290 (88)	415 (126)	—					
20°F (-7°C)	200 (61)	265 (81)	400 (122)	415 (126)*					
0°F (-18°C)	165 (50)	225 (69)	330 (101)	415 (126)*					
	32°F (0°C) 20°F (-7°C) 0°F (-18°C) 32°F (0°C) 20°F (-7°C) 0°F (-18°C) 32°F (0°C) 20°F (-7°C) 0°F (-18°C) 32°F (0°C) 32°F (0°C) 20°F (-7°C)	temperature 15 A 32°F (0°C) 100 (30) 20°F (-7°C) 95 (29) 0°F (-18°C) 80 (24) 32°F (0°C) 190 (58) 20°F (-7°C) 180 (55) 0°F (-18°C) 145 (44) 32°F (0°C) 200 (61) 20°F (-7°C) 190 (58) 0°F (-18°C) 155 (47) 32°F (0°C) 215 (66) 20°F (-7°C) 200 (61)	Start-uptemperature15 A20 A $32^{\circ}F$ (0°C)100 (30)135 (41) $20^{\circ}F$ (-7°C)95 (29)125 (38) $0^{\circ}F$ (-18°C)80 (24)100 (30) $32^{\circ}F$ (0°C)190 (58)250 (76) $20^{\circ}F$ (-7°C)180 (55)235 (72) $0^{\circ}F$ (-18°C)145 (44)195 (59) $32^{\circ}F$ (0°C)200 (61)265 (81) $20^{\circ}F$ (-7°C)190 (58)250 (76) $0^{\circ}F$ (-18°C)155 (47)205 (62) $32^{\circ}F$ (0°C)215 (66)290 (88) $20^{\circ}F$ (-7°C)200 (61)265 (81)	Start-up temperature 15 A 20 A 30 A 32°F (0°C) 100 (30) 135 (41) 200 (61) 20°F (-7°C) 95 (29) 125 (38) 185 (56) 0°F (-18°C) 80 (24) 100 (30) 155 (47) 32°F (0°C) 190 (58) 250 (76) 380 (116) 20°F (-7°C) 180 (55) 235 (72) 355 (108) 0°F (-18°C) 145 (44) 195 (59) 290 (88) 32°F (0°C) 200 (61) 265 (81) 400 (122) 20°F (-7°C) 190 (58) 250 (76) 370 (113) 0°F (-18°C) 145 (44) 195 (59) 290 (88) 32°F (0°C) 200 (61) 265 (81) 400 (122) 20°F (-7°C) 190 (58) 250 (76) 370 (113) 0°F (-18°C) 155 (47) 205 (62) 305 (93) 32°F (0°C) 215 (66) 290 (88) 415 (126) 20°F (-7°C) 200 (61) 265 (81) 400 (122)					

* Only FTC-P power connection kits may be used with 40-A circuits.

BUS WIRES

16 AWG nickel-plated copper

BRAID / OUTER JACKET

Tinned-copper braid with fluoropolymer (-XT) or modified polyolefin (-X) outer jacket

DIMENSIONS	
Maximum width	0.54 in (14 mm)
Maximum thickness	0.24 in (6 mm)

NOMINAL WEIGHT

92 lb/1000 ft (137 kg/1000 m)

CONNECTION KITS

RAYCHEM RayClic or FTC connection kits must be used with IceStop heating cables. Refer to the Roof and Gutter De-Icing Design Guide (H56070) for proper connection kit selection.

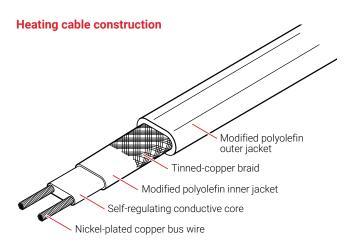
APPROVALS

877Z De-icing and Snow-Melting Equipment

FM

Nonhazardous and Hazardous Locations Class 1, Div. 2, Groups A, B, C, D* * For GM-1XT and GM-2XT

The IceStop heating cables are UL Listed, CSA Certified, and FM Approved only when used with the appropriate agencyapproved nVent connection kits and accessories.


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

ELECTROMELT

SELF-REGULATING SURFACE SNOW-MELTING AND ANTI-ICING HEATING CABLE

PRODUCT OVERVIEW

nVent RAYCHEM ElectroMelt provides surface snow melting and anti-icing in concrete pavement.

Self-regulating

The polymer core of an ElectroMelt heating cable automatically adjusts power output at every point along its length in response to concrete pavement temperature. This response characteristic eliminates burnouts caused by overlapping cable and provides improved energy efficiency without the need for special controls.

Parallel circuitry

The crosslinked, conductive polymer core of the ElectroMelt heating cable is extruded between two 14 AWG copper bus wires, forming a parallel circuit. This allows ElectroMelt heating cables to be cut to length and to be spliced and repaired, if necessary, in the field.

Rugged

Specifically designed for direct burial in concrete, ElectroMelt heating cables are protected by a tinned-copper braid encased in a 70-mil modified polyolefin outer jacket. With no exposed metal parts to corrode, no cold leads to fail, and no burnout due to overlaps or hot spots, rugged ElectroMelt heating cable offers an ideal solution for all types of concrete pavement snow melting and anti-icing.

CATALOG NUMBER

EM2-XR

POWER OUTPUT W/FT (W/M)

Voltage	Power Output W/ft (W/m)
208	30 (98)
240	32 (1`05)
277	34 (112)

DIMENSIONS

Maximum width Maximum thickness 0.75 in (19 mm) 0.38 in (10 mm)

MINIMUM INSTALLATION TEMPERATURE

0°F (-18°C)

MINIMUM BEND RADIUS

2 in (50 mm)

MAXIMUM CIRCUIT LENGTH FOR STARTUP AT 20°F (-7°C) IN FEET (METERS)

		Heating cable supply voltage								
Circuit breaker (A)	208 V	240 V	277 V							
15	80 (24)	85 (26)	100 (31)							
20	105 (32)	115 (35)	130 (40)							
30	160 (49)	170 (52)	195 (59)							
40	210 (64)	230 (70)	260 (79)							
50	265 (81)	285 (87)	325 (99)							

MAXIMUM CIRCUIT LENGTH FOR STARTUP AT 0°F (-18°C) IN FEET (METERS)

		Heating cable supply voltage									
Circuit breaker (A)	208 V	240 V	277 V								
15	75 (23)	80 (24)	90 (27)								
20	100 (31)	110 (34)	120 (37)								
30	145 (44)	160 (49)	180 (55)								
40	200 (61)	210 (64)	240 (73)								
50	245 (75)	265 (81)	300 (91)								

† Not permitted

BUS WIRES

14 AWG nickel-plated copper

BRAID / OUTER JACKET

Heavy tinned-copper braid encased in a 70-mil modified polyolefin outer jacket

NOMINAL WEIGHT

180 lb/1000 ft (268 kg/1000 m)

CONNECTION KITS

RAYCHEM ElectroMelt connection kits must be used to terminate ElectroMelt heating cables. Refer to the Surface Snow Melting and Anti-Icing Design Guide – ElectroMelt (H53393) for proper connection kit selection.

APPROVALS

(łł	877Z De-icing and Snow-melting
LISTED	Equipment

The EM2-XR heating cable is UL Listed and CSA Certified only when used with the appropriate agency-approved nVent connection kits and accessories.

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

MI HEATING CABLE

LSZH JACKETED, COPPER SHEATHED MI CABLE FOR SURFACE SNOW MELTING IN CONCRETE, ASPHALT, AND PAVERS

MI Heating Cable Configuration

Type SUA

Type SUB

PRODUCT OVERVIEW

The copper-sheathed, mineral insulated heating cables are covered with an extruded low-smoke zero-halogen (LSZH) jacket and are supplied as complete factory-assembled cables ready to connect to a junction box. The series-type technology, inherent to all mineral insulated heating cables, provides a reliable and consistent heat source that is ideal for embedded snow melting applications.

The copper sheath provides an ideal ground path and allows for a rugged yet flexible heating cable that is easy to install.

For additional information, contact your nVent representative or call (800) 545-6258.

CABLE CONSTRUCTION

Heating cable		Product warranty
Jacket	LSZH	
Sheath	Seamless copper	
Insulation	Magnesium oxide	
Conductor type	Alloy or copper	
Number of conductors	1	
Insulation voltage rating	600 V	
Cable diameter (with jacket)	0.200 to 0.303 in (5.1 to 7.7 mm)	
Cold lead		
Jacket	LSZH	
Sheath	Seamless copper	
Insulation	Magnesium oxide	
Conductor type	Copper	
Number of conductors	1 or 2	
Insulation voltage rating	600 V	
Cable diameter (with jacket)	0.310 to 0.420 in (7.9 to 10.7 mm)	
Gland size (NPT)	1/2 in	
Tail length	12 in (30 cm)	
MINIMUM INSTALLATION TEMPERATURE		
	−4°F (−20°C) for UL, −22°F (−30°C) for CSA	
MINIMUM BENDING RADIUS		

6 times cable diameter

SUA/SUB HEATING CABLE SPECIFICATIONS

			Heate	d length	Nominal		Cold lengt				Nominal diameter		Resis-	
Catalog number		Heating cable reference	(ft)	(m)	power (watts)	voltage (volts)	(ft)	(m)	Cold lead code	Joint type	(in)	(mm)	tance ² (ohms)	Tail size (AWG)
120 Volts														
SUA5	А	61RD3610-RD	40	12.2	550	120	7	2.1	R22A	Y	0.200	5.1	26.2	14
SUA9	А	61RD3200-RD	66	20.1	1100	120	7	2.1	R22A	Y	0.248	6.3	13.1	14
208 Volts														
SUA4	А	61RD3390-RD	68	20.7	1600	208	7	2.1	R22A	Y	0.212	5.4	27.0	14
SUA7	А	61RD3200-RD	95	29.0	2300	208	7	2.1	R22A	Y	0.248	6.3	18.8	14
SUB1	В	61RE3105-RD	132	40.2	3100	208	15	4.6	R25A	Y	0.254	6.5	14.0	14
SUB3	В	61RE4400-RD	280	85.3	3900	208	15	4.6	R30A	Y	0.265	6.7	11.2	12
SUB5	В	61RE4300-RD	260	79.2	5500	208	15	4.6	R40A	Y	0.272	6.9	7.9	10
SUB7	В	61RE4200-RD		94.5	7000	208	15	4.6	R40A	Y	0.285	7.2	6.2	10
SUB9	В	61RC5651-RD		192.0	9000	208	15	4.6	R60A	Y	0.274	7.0	4.7	8
SUB10	В	61RC5409-RD		218.5	13000	208	15	4.6	R80A	Y	0.303	7.7	3.4	6
SUB1402	B	61RD3610-RD		15.2	1400	208	15	4.6	R25A	Ŷ	0.232	5.9	30.9	14
SUB1702	В	61RD3390-RD		19.5	1700	208	15	4.6	R25A	Y	0.242	6.1	25.4	14
SUB2002	B	61RD3300-RD		22.0	2000	208	15	4.6	R25A	Y	0.240	6.1	21.6	14
SUB2002	B	61RD3200-RD		27.4	2400	208	15	4.6	R25A	Y	0.248	6.3	18.0	14
SUB2402	B	61RE3150-RD		31.4	2800	208	15	4.6	R25A	Y	0.240	6.4	15.5	14
SUB2802	B	61RE3105-RD		36.9	3400	208	15	4.6	R25A	Y	0.254	6.5	12.7	14
SUB3902	B	61RE4800-RD		42.4	3900	208	15	4.6	R25A	Y	0.262	6.7	12.7	14
SUB3902 SUB4502	B	61RE4600-RD		48.8	4500	208	15	4.6	R25A	Y	0.202	7.0	9.6	14
SUB4502 SUB5502	B	61RE4400-RD					15	4.0	R25A R30A	r Y	0.274		9.0 7.9	14
				60.1	5500	208						6.7		
SUB6402	B	61RE4300-RD		68.9	6400	208	15	4.6	R40A	Y	0.272	6.9	6.8	10
SUB7802	B	61RE4200-RD		84.5	7800	208	15	4.6	R40A	Y	0.285	7.2	5.5	10
	В	61RC4100-RD		112.2	10300	208	15	4.6	R60A	Y	0.278	7.1	4.2	8
SUB12802		61RC5651-RD		138.7	12800	208	15	4.6	R80A	Y	0.274	7.0	3.4	6
SUB16102	В	61RC5409-RD	5/6	175.6	16100	208	15	4.6	R80A	Y	0.303	7.7	2.7	6
240 Volts							_							
SUA3	А	61RD3200-RD		42.7	2000		7	2.1	R22A	Y	0.248	6.3	28.0	14
SUA8	А	61RE3105-RD		53.9	3200	240	7	2.1	R22A	Y	0.254	6.5	18.0	14
SUB2	В	61RE4600-RD		73.1	4000	240	15	4.6	R25A	Y	0.274	7.0	14.5	14
SUB3	В	61RE4400-RD		85.3	5200	240	15	4.6	R30A	Y	0.265	6.7	11.2	12
SUB4	В	61RE4300-RD		97.5	6000	240	15	4.6	R30A	Y	0.272	6.9	9.6	12
SUB5	В	61RE4300-RD	260	79.2	7350	240	15	4.6	R40A	Y	0.272	6.9	7.9	10
SUB6	В	61RE4200-RD	375	114.3	7500	240	15	4.6	R40A	Y	0.285	7.2	7.5	10
SUB7	В	61RE4200-RD	310	94.5	9250	240	15	4.6	R40A	Υ	0.285	7.2	6.2	10
SUB8	В	61RC4100-RD	550	167.6	9000	240	15	4.6	R60A	Y	0.278	7.1	6.4	8
SUB9	В	61RC5651-RD	630	192.0	12000	240	15	4.6	R60A	Υ	0.274	7.0	4.7	8
SUB10	В	61RC5409-RD	717	218.5	17000	240	15	4.6	R80A	Y	0.303	7.7	3.4	6
SUB1604	В	61RD3610-RD	59	18.0	1600	240	15	4.6	R25A	Y	0.200	5.1	36.0	14
SUB2004	В	61RD3390-RD	74	22.6	2000	240	15	4.6	R25A	Y	0.212	5.4	28.8	14
SUB2304	В	61RD3300-RD	84	25.6	2300	240	15	4.6	R25A	Υ	0.240	6.1	25.0	14
SUB2804	В	61RD3200-RD	103	31.4	2800	240	15	4.6	R25A	Y	0.248	6.3	20.6	14
SUB3204	В	61RE3150-RD	120	36.6	3200	240	15	4.6	R25A	Y	0.228	5.8	18.0	14

¹To modify cold lead length, contact your nVent RAYCHEM sales representative.

²Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

SUA/SUB HEATING CABLE SPECIFICATIONS

Catalon	Confin	Heating	Heate	d length	Nominal	Cable	Cold lengt		Cold	loint	Nomina diamete		Resis-	Tail
Catalog number	Config- uration	cable reference	(ft)	(m)	power (watts)	voltage (volts)	(ft)	(m)	lead code	Joint type	(in)	(mm)	tance ² (ohms)	size (AWG)
240 Volts	, cont.													
SUB3904		61RE3105-RD	140	42.7	3900	240	15	4.6	R25A	Y	0.254	6.5	14.8	14
SUB4504	В	61RE4800-RD	160	48.8	4500	240	15	4.6	R25A	Y	0.262	6.7	12.8	14
SUB5204	В	61RE4600-RD	185	56.4	5200	240	15	4.6	R25A	Y	0.274	7.0	11.1	14
SUB6404	В	61RE4400-RD	225	68.6	6400	240	15	4.6	R30A	Y	0.265	6.7	9.0	12
SUB7304	В	61RE4300-RD	263	80.2	7300	240	15	4.6	R40A	Y	0.272	6.9	7.9	10
SUB9004	В	61RE4200-RD	320	97.6	9000	240	15	4.6	R40A	Y	0.285	7.2	6.4	10
SUB11904	В	61RC4100-RD	426	129.9	11900	240	15	4.6	R60A	Y	0.278	7.1	4.8	8
SUB14704	В	61RC5651-RD	528	161.0	14700	240	15	4.6	R80A	Y	0.274	7.0	3.9	6
SUB18604	В	61RC5409-RD	664	202.4	18600	240	15	4.6	R80A	Y	0.303	7.7	3.1	6
277 Volts	and 48	80 Volts, 3-pha	ase Wy	ye										
SUA3	А	61RD3200-RD	140	42.7	2740	277	7	2.1	R22A	Y	0.248	6.3	28.0	14
SUA8	A	61RE3105-RD	177	53.9	4100	277	7	2.1	R22A	Y	0.254	6.5	18.7	14
SUB2	В	61RE4600-RD	240	73.1	5300	277	15	4.6	R25A	Y	0.274	7.0	14.5	14
SUB3	В	61RE4400-RD	280	85.3	6850	277	15	4.6	R30A	Y	0.265	6.7	11.2	12
SUB4	В	61RE4300-RD	320	97.5	8000	277	15	4.6	R30A	Y	0.272	6.9	9.6	12
SUB6	В	61RE4200-RD	375	114.3	10200	277	15	4.6	R40A	Y	0.285	7.2	7.5	10
SUB8	В	61RC4100-RD	550	167.6	12200	277	15	4.6	R60A	Y	0.278	7.1	6.4	8
SUB9	В	61RC5651-RD	630	192.0	16400	277	15	4.6	R60A	Y	0.274	7.0	4.7	8
SUB15	В	61RE4800-RD	225	68.6	4250	277	15	4.6	R25A	Y	0.262	6.7	18.1	14
SUB16	В	61RE4400-RD	310	94.5	6180	277	15	4.6	R25A	Y	0.265	6.7	12.4	14
SUB17	В	61RE4200-RD	440	134.1	8700	277	15	4.6	R40A	Y	0.285	7.2	8.8	10
SUB18	В	61RC4100-RD	560	170.7	12000	277	15	4.6	R60A	Y	0.278	7.1	6.4	8
SUB1807	В	61RD3610-RD	70	21.3	1800	277	15	4.6	R25A	Y	0.200	5.1	42.6	14
SUB2307	В	61RD3390-RD	85	25.9	2300	277	15	4.6	R25A	Y	0.212	5.4	33.4	14
SUB2707	В	61RD3300-RD	95	29.0	2700	277	15	4.6	R25A	Y	0.240	6.1	28.4	14
SUB3207	В	61RD3200-RD	119	36.3	3200	277	15	4.6	R25A	Y	0.248	6.3	24.0	14
SUB3807	В	61RE3150-RD	135	41.2	3800	277	15	4.6	R25A	Y	0.228	5.8	20.2	14
SUB4507	В	61RE3105-RD	162	49.4	4500	277	15	4.6	R25A	Υ	0.254	6.5	17.1	14
SUB5207	В	61RE4800-RD	184	56.1	5200	277	15	4.6	R25A	Y	0.262	6.7	14.8	14
SUB6007	В	61RE4600-RD	213	64.9	6000	277	15	4.6	R25A	Υ	0.274	7.0	12.8	14
SUB7307	В	61RE4400-RD	262	79.9	7300	277	15	4.6	R30A	Υ	0.265	6.7	10.5	12
SUB8507	В	61RE4300-RD	300	91.5	8500	277	15	4.6	R40A	Υ	0.272	6.9	9.0	10
SUB10307	В	61RE4200-RD	372	113.4	10300	277	15	4.6	R40A	Y	0.285	7.2	7.4	10
SUB13707	В	61RC4100-RD	491	149.7	13700	277	15	4.6	R60A	Y	0.278	7.1	5.6	8
SUB17207	В	61RC5651-RD	600	182.9	17200	277	15	4.6	R80A	Y	0.274	7.0	4.5	6

¹To modify cold lead length, contact your nVent Thermal Building Solutions sales representative.

 2 Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

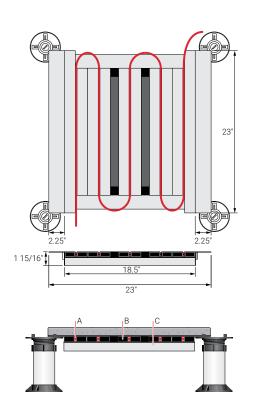
SUA/SUB HEATING CABLE SPECIFICATIONS

Catalog	Confia-	Heating cable	Heated length		Nominal power	Cable voltage	Cold lengt		Cold lead	Joint	Nominal cable diameter		Resis- tance ²	Tail size
number		reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)	(AWG)
347 Volts	and 60	0 Volts, 3-pha	ise Wy	/e										
SUB2305	В	61RD3610-RD	85	25.9	2300	347	15	4.6	R25A	Υ	0.200	5.1	52.4	14
SUB2905	В	61RD3390-RD	107	32.6	2900	347	15	4.6	R25A	Υ	0.212	5.4	41.5	14
SUB3405	В	61RD3300-RD	119	36.3	3400	347	15	4.6	R25A	Υ	0.240	6.1	35.4	14
SUB4105	В	61RD3200-RD	148	45.1	4100	347	15	4.6	R25A	Υ	0.248	6.3	29.4	14
SUB4705	В	61RE3150-RD	171	52.1	4700	347	15	4.6	R25A	Υ	0.228	5.8	25.6	14
SUB5605	В	61RE3105-RD	205	62.5	5600	347	15	4.6	R25A	Υ	0.254	6.5	21.5	14
SUB6505	В	61RE4800-RD	231	70.4	6500	347	15	4.6	R25A	Υ	0.262	6.7	18.5	14
SUB7505	В	61RE4600-RD	267	81.4	7500	347	15	4.6	R25A	Υ	0.274	7.0	16.1	14
SUB9205	В	61RE4400-RD	327	99.7	9200	347	15	4.6	R30A	Υ	0.265	6.7	13.1	12
SUB10605	В	61RE4300-RD	380	115.9	10600	347	15	4.6	R40A	Υ	0.272	6.9	11.4	10
SUB13005	В	61RE4200-RD	463	141.2	13000	347	15	4.6	R40A	Υ	0.285	7.2	9.3	10
SUB17205	В	61RC4100-RD	614	187.2	17200	347	15	4.6	R60A	Υ	0.278	7.1	7.0	8
480 Volts														
SUB19	В	61RD3200-RD	245	74.7	4700	480	15	4.6	R25A	Υ	0.248	6.3	49.0	14
SUB20	В	61RE3105-RD	340	103.6	6450	480	15	4.6	R25A	Y	0.254	6.5	35.7	14
SUB21	В	61RE4600-RD	440	134.1	8700	480	15	4.6	R25A	Y	0.274	7.0	26.5	14
SUB22	В	61RE4400-RD	525	160.0	11000	480	15	4.6	R25A	Y	0.265	6.7	20.9	14
SUB3208	В	61RD3610-RD	118	36.0	3200	480	15	4.6	R25A	Y	0.200	5.1	72.0	14
SUB4008	В	61RD3390-RD	147	44.8	4000	480	15	4.6	R25A	Y	0.212	5.4	57.6	14
SUB4708	В	61RD3300-RD	163	49.7	4700	480	15	4.6	R25A	Υ	0.240	6.1	49.0	14
SUB5708	В	61RD3200-RD	202	61.6	5700	480	15	4.6	R25A	Y	0.248	6.3	40.4	14
SUB6608	В	61RE3150-RD	233	71.0	6600	480	15	4.6	R25A	Υ	0.228	5.8	34.9	14
SUB7908	В	61RE3105-RD	278	84.8	7900	480	15	4.6	R25A	Y	0.254	6.5	29.2	14
SUB9008	В	61RE4800-RD	320	97.6	9000	480	15	4.6	R25A	Υ	0.262	6.7	25.6	14
SUB10408	В	61RE4600-RD	368	112.2	10400	480	15	4.6	R25A	Y	0.274	7.0	22.2	14
SUB12808	В	61RE4400-RD	450	137.2	12800	480	15	4.6	R30A	Υ	0.265	6.7	18.0	12
SUB14808	В	61RE4300-RD	520	158.5	14800	480	15	4.6	R40A	Y	0.272	6.9	15.6	10
SUB18008	В	61RE4200-RD	640	195.1	18000	480	15	4.6	R40A	Y	0.285	7.2	12.8	10
600 Volts														
SUB11	В	61RD3390-RD	225	68.6	4100	600	15	4.6	R25A	Y	0.212	5.4	87.8	14
SUB12	В	61RD3200-RD	310	94.5	5800	600	15	4.6	R25A	Y	0.248	6.3	62.1	14
SUB13	В	61RE3105-RD	428	130.5	8000	600	15	4.6	R25A	Y	0.254	6.5	45.0	14
SUB14	В	61RE4600-RD	548	167.0	11000	600	15	4.6	R25A	Y	0.274	7.0	32.7	14
SUB4006	В	61RD3610-RD	147	44.8	4000	600	15	4.6	R25A	Y	0.200	5.1	90.0	14
SUB5106	В	61RD3390-RD	181	55.2	5100	600	15	4.6	R25A	Y	0.212	5.4	70.6	14
SUB5806	В	61RD3300-RD	207	63.1	5800	600	15	4.6	R25A		0.240	6.1	62.1	14
SUB7106	В	61RD3200-RD	254	77.4	7100	600	15	4.6	R25A		0.248	6.3	50.7	14
SUB8206	В	61RE3150-RD	293	89.3	8200	600	15	4.6	R25A		0.228	5.8	43.9	14
SUB9806	В	61RE3105-RD	350		9800	600	15	4.6	R25A		0.254	6.5	36.7	14
	В	61RE4800-RD	402		11200	600	15	4.6	R25A		0.262	6.7	32.1	14
SUB13006		61RE4600-RD	462		13000	600	15	4.6	R25A		0.274	7.0	27.7	14
					15900	600	15	4.6	R30A		0.265	6.7	22.6	12

¹To modify cold lead length, contact your nVent RAYCHEM sales representative.

 2 Resistance tolerance: +/- 10%

Tolerance on heating cable length: –0% to +3%


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many nVent RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

PMPH

PEDESTAL MOUNTED PAVER HEATING SYSTEM FOR MELTING SNOW ON PAVERS INSTALLED ON PEDESTALS

PRODUCT OVERVIEW

nVent RAYCHEM brand Pedestal Mounted Paver Heating (PMPH) systems are designed to melt snow on pavers installed on pedestals. The PMPH systems are mounted on pedestals under the pavers to provide efficient, uniformed heat transfer to the pavers.

The PMPH system consists of high wattage RAYCHEM QTVR electric heating cable [A], aluminum tray and conduits [B] designed to fit the cable, and 1 inch of closed cell foam insulation [C]. The PMPH system is designed for efficient and uniformed heat transfer across the top surface. The insulation at the bottom minimizes the heat loss from the bottom surface. The PMPH system uses 5 linear runs of 20QTVR-CT cable with power output necessary for heavy snow load areas.

PMPH systems provide:

- Long term snow melting solution by mechanically protecting the heating cable
- Efficient and uniformed heat transfer across the heated surface
- High performance and reliable solution for heavy snow load areas

CATALOG NUMBER

PMPH, Pedestal Mounted Paver Heating System

CONTENTS

РМРН	Al-Conduits and Tray 20QTVR-CT (5 runs per PMPH system) 1 inch closed cell foam insulation	
MATERIALS OF CONSTRUCT	ON	
Top Section	Aluminum Tray and Conduits	
Bottom Section	Polyisocyanurate closed cell insulation	

PMPH				
ADDITIONAL MATERIALS (AS REQUIRED)				
Power Connection Gland (C75-100-A)	NEMA 4X rated gland kit with flexible conduit to protect and connect heating cable to a junction box			

Splice Connection Kit (PMKG-LS)	Low profile splice cor
---------------------------------	------------------------

End Connection Kit (PMK-HSE2)

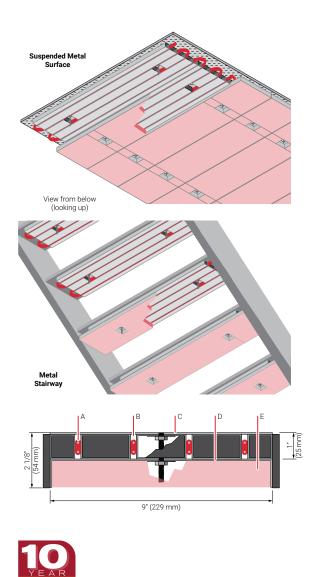
cable to a junction box Low profile splice connection kit

Kit (PMK-HSE2) Heat shrink end seal kit

Note: The junction boxes, pavers and pedestals are provided by others. Appropriate control and monitoring systems should be used with PMPH systems. Only approved connection kits and accessories must be used with PMPH Systems.

PRODUCT SPECIFICATIONS (NOMINAL)

Power Output	20 W/ft (65.6 W/m) of QTVR heating cable at 10°C (50°F)
Minimum Installation Temperature	0°F (-18°C)
Overall PMPH Dimensions	Width: 23 in (584 mm) Length: 23 in (584 mm) Thickness: 1 ¾ in (44 mm)
Conduit Thickness	0.0625 in (1.6 mm)
Insulation	Thickness: 1 in (25 mm)
Overall PMPH Weight	2.05 lb/Sq. ft. (10 kg/sq. m.)
Heating Cable Specifications	Please refer to QTVR datasheet H54041


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

SMH

SUSPENSION MOUNTED HEATING SYSTEM FOR MELTING SNOW ON SUSPENDED SURFACES

PRODUCT OVERVIEW

nVent RAYCHEM brand Suspension Mounted Heating (SMH) systems are designed to melt snow on suspended surfaces such as metal stairs, catwalks, walkways etc. The SMH systems are mounted against the underside of these surfaces to ensure maximum thermal contact between the SMH system and the heated surface.

The SMH system consists of a top section which includes high wattage RAYCHEM QTVR electric heating cable [A], aluminum channels positioned to provide a path [B] for the cable, top aluminum plate (C) in contact with the heated surface and the bottom section which includes aluminum tray (D) with insulation. The bottom tray consists of 1 inch of closed cell foam insulation [E] that minimizes the heat loss from the bottom surface of the SMH system. Once installed, the complete SMH system provides efficient and uniform heat transfer across the heated surface. The SMH system uses 4 linear runs of 20QTVR-CT cable.

SMH systems provide:

- Long term snow melting solution by mechanically protecting the heating cable
- Aesthetically pleasing solution by concealing the heating cable
- Efficient and uniformed heat transfer across the heated surface
- High performance and reliable solution for heavy snow load areas

CATALOG NUMBER

SMH, Suspension Mounted Heating System

CONTENTS

SMH

Top section with aluminum channels and plate 20QTVR-CT (4 runs per SMH system) Bottom section with aluminum tray and 1 inch closed cell foam insulation

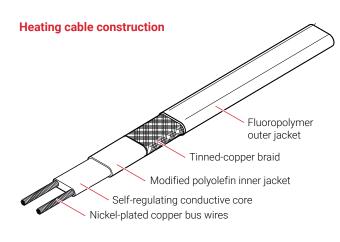
SMH MATERIALS OF CONSTRUCTION			
Top Section	Aluminum		
Bottom Section	Aluminum Closed cell foam insulation		
ADDITIONAL MATERIALS (AS REQUIRED)			
Power Connection Gland (C75-100-A)	NEMA 4X rated gland kit with flexible conduit to protect and connect heating cable to a junction box		
Splice Connection kit (PMKG-LS)	Low profile splice connection kit		

End Connection kit (PMK-HSE2) Heat shrink end seal

Note: The junction boxes, conduits and studs for attachment are typically provided by others. Appropriate control and monitoring systems should be used with SMH systems. Only approved connection kits and accessories must be used with SMH systems.

PRODUCT SPECIFICATIONS (NOMINAL)

Power Output	20 W/ft (65.6 W/m) of QTVR heating cable at 10°C (50°F)	
Minimum Installation Temperature	0°F (-18°C)	
Overall SMH Dimensions*	Width: 9 in (229 mm) Length: Max. 56 in (1422 mm) Thickness: 2 3/8 in (60 mm)	
Top Plate Dimensions*	Width: 9 in (229 mm) Length: Max. 50 in (1270 mm) Thickness: 0.090 in (2.3 mm)	
Channel Thickness	0.0625 in (1.6 mm)	
Insulation	Thickness: 1 in (25 mm)	
Overall SMH Weight	5.26 lb/Sq. ft. (25.68 kg/sq. m.)	
Heating Cable Specifications	Please refer to QTVR datasheet H54041	
* For custom dimensions, please contact nVent		


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

RAYSOL

SELF-REGULATING HEATING CABLE FOR HEAT LOSS REPLACEMENT, FLOOR HEATING, RADIANT SPACE HEATING, AND FROST HEAVE PREVENTION APPLICATIONS

PRODUCT OVERVIEW

The nVent RAYCHEM RaySol system is designed for the following floor heating applications.

Heat-loss replacement – replaces heat in concrete floors built over garages, loading docks, arcades, and other cold spaces. The cable is typically attached to the bottom of concrete floors.

Comfort floor heating – warms concrete, tile, stone and marble floors in lobbies, foyers, bathrooms, kitchens and gymnasiums. The cable is typically embedded in a thick mortar bed or concrete.

Radiant space heating – provides primary space heating for rooms with concrete floors. The cable is typically embedded in concrete or a thick mortar bed.

Freezer frost heave prevention – prevents heaving in soils under freezers, refrigerated warehouses, and cold rooms. The cable is placed in conduit buried in soil or in the subflooring under the freezer floor.

Efficient and economical to operate

Because it's self-regulating, a RaySol system will supply the right heat only where and when it is needed. The radiant heat provided by the RaySol heating cable allows you to feel comfortable at lower air temperatures, resulting in lower heating costs.

nVent representatives can provide design assistance and help you install the product that meets your goals for an efficient, cost-effective floor heating system.

CATALOG NUMBER

	RAYSOL-1	RAYSOL-2
VOLTAGE		
	120 V	208-277 V
MINIMUM BEND RADIUS		
	5/8 in (16 mm)	5/8 in (16 mm)

RAYSOL MAXIMUM CIRCUIT LENGTH IN FEET (METERS)

	Circuit				Cable ope	erating volt	age		
	breaker rating (A)	12(v	20	8 V	24	o v	27	7 V
Installed in conduit	15	180	(54.9)	305	(93.0)	335	(102.1)	375	(114.3)
(at 40°F start-up temperature)	20	240	(73.2)	410	(125.0)	450	(137.2)	500	(152.4)
temperature)	30	240	(73.2)	410	(125.0)	450	(137.2)	500	(152.4)
	40	240	(73.2)	410	(125.0)	450	(137.2)	500	(152.4)
Surface mounted	15	120	(36.6)	205	(62.5)	210	(64.0)	215	(65.5)
(at 40°F start-up temperature)	20	160	(48.8)	275	(83.8)	285	(86.9)	290	(88.4)
temperature)	30	240	(73.2)	410	(125.0)	425	(129.5)	430	(131.1)
	40	240	(73.2)	410	(125.0)	425	(129.5)	430	(131.1)
Embedded in concrete or	15	80	(24.4)	135	(41.1)	140	(42.7)	145	(44.2)
mortar (at 40°F start-up temperature)	20	105	(32.0)	185	(56.4)	185	(56.4)	195	(59.4)
temperature)	30	160	(48.8)	275	(83.8)	280	(85.3)	290	(88.4)
	40	170	(51.8)	280	(85.3)	320	(97.5)	360	(109.7)

BUS WIRES

16 AWG nickel-plated copper

BRAID / OUTER JACKET

Tinned-copper braid with fluoropolymer outer jacket

DIMENSIONS

Maximum width	0.56 in (14 mm)
Maximum thickness	0.24 in (6 mm)

NOMINAL WEIGHT

92 lb/1000 ft (137 kg/1000 m)

CONNECTION KITS

RAYCHEM RayClic-E, FTC-P, FTC-XC, and FTC-HST connection kits must be used to connect and to terminate RaySol heating cables. Refer to the Freezer Frost Heave Prevention Design Guide (H58139) and the Heat Loss Replacement Design Guide (H58157) for proper connection kit selection.

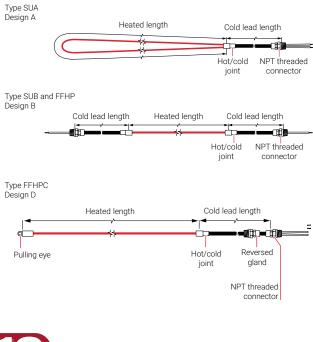
APPROVALS

9J86 Radiant Heating Cable

The RaySol system is UL Listed for heat loss replacement, comfort floor heating and radiant space heating applications.

The RaySol system is CSA Certified for comfort floor heating and radiant space heating applications. For heat loss replacement applications where the cable is attached to the bottom of the concrete floor, contact nVent for additional information.

GROUND-FAULT PROTECTION


To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

MI HEATING CABLE

LSZH JACKETED, COPPER AND ALLOY 825 SHEATHED MI CABLE FOR FREEZER FROST HEAVE PREVENTION APPLICATIONS

MI Heating Cable Configuration

PRODUCT OVERVIEW

Types SUA, SUB, and FFHP heating cables have a copper sheath that is extruded with low-smoke zero-halogen (LSZH) jacket and are suitable for applications where the cable is directly embedded in the subfloor.

Type FFHPC heating cables are suitable for applications where the cable is installed in conduit. These heating cables are supplied with a copper sheathed cold lead and a heated length made with either Alloy 825 or a copper sheath with an extruded LSZH jacket.

MI heating cables for frost heave prevention applications are supplied as complete factory fabricated assemblies ready to fasten into a junction box. The copper or Alloy 825 sheath allows for a rugged yet flexible heating cable which is easy to install.

For additional information, contact your nVent representative or call (800) 545-6258.

CABLE CONSTRUCTION

Type SUA,	SUB and	FFHP	heating	cable
-----------	---------	------	---------	-------

Sheath	Seamless copper
Jacket	LSZH
Insulation	Magnesium oxide
Conductor type	Alloy or copper
Number of conductors	1
Insulation voltage rating	600 V
Cable diameter (with jacket)	0.20 to 0.303 in (5.1 to 7.7 mm)
Type FFHPC heating cable	
Sheath	Alloy 825 or seamless copper
Jacket (for copper sheath cables)	LSZH
Insulation	Magnesium oxide
Conductor type	Alloy

echnical Data

CABLE CONSTRUCTION 2 Number of conductors Insulation voltage rating 300 V Cable diameter Alloy 825 sheath 0.130 to 0.174 in (3.3 to 4.4 mm) Copper sheath (with jacket) 0.245 to 0.270 in (6.2 to 6.9 mm) Cold lead Sheath Seamless copper Jacket (Type SUA/SUB/FFHP cables) LSZH Insulation Magnesium oxide Conductor type Copper Number of conductors 1 or 2 Insulation voltage rating 600 V Cable diameter With jacket 0.310 to 0.420 in (7.9 to 10.7 mm) Without jacket (Type FFHPC) 0.371 in (9.4 mm) Gland size (NPT) 1/2 in Tail length 12 in (30 cm) Reversed gland size (Type FFHPC) 3/4 in NPT

MINIMUM INSTALLATION TEMPERATURE

-22°F (-30°C)

MINIMUM BENDING RADIUS

6 times cable diameter

SUA/SUB HEATING CABLE SPECIFICATIONS

Catalog		Heating cable	Heate	d length	Nominal power	Cable voltage		l lead gth 1	Cold lead	Joint		ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)
120 Vol	ts and 20	08 Volts, 3-phase	Wye										
SUA3	А	61RD3200-RD	140	42.7	500	120	7	2.1	R22A	Y	0.248	6.3	28.0
SUA4	А	61RD3390-RD	68	20.7	550	120	7	2.1	R22A	Y	0.212	5.4	27.0
SUA7	А	61RD3200-RD	95	29.0	750	120	7	2.1	R22A	Y	0.248	6.3	18.8
SUA8	А	61RE3105-RD	177	53.9	800	120	7	2.1	R22A	Y	0.254	6.5	18.0
SUB1	В	61RE3105-RD	132	40.2	1000	120	15	4.6	R25A	Y	0.254	6.5	14.0
SUB2	В	61RE4600-RD	240	73.1	1000	120	15	4.6	R25A	Y	0.274	7.0	14.5
SUB3	В	61RE4400-RD	280	85.3	1300	120	15	4.6	R30A	Y	0.265	6.7	11.2
SUB4	В	61RE4300-RD	320	97.5	1500	120	15	4.6	R30A	Y	0.272	6.9	9.6
SUB5	В	61RE4300-RD	260	79.2	1800	120	15	4.6	R40A	Y	0.272	6.9	7.9
SUB6	В	61RE4200-RD	375	114.3	1900	120	15	4.6	R40A	Y	0.285	7.2	7.5
SUB7	В	61RE4200-RD	310	94.5	2300	120	15	4.6	R40A	Y	0.285	7.2	6.2
SUB8	В	61RC4100-RD	550	167.6	2300	120	15	4.6	R60A	Y	0.278	7.1	6.4
SUB9	В	61RC5651-RD	630	192.0	3000	120	15	4.6	R60A	Y	0.274	7.0	4.7
SUB10	В	61RC5409-RD	717	218.5	4300	120	15	4.6	R80A	Y	0.303	7.7	3.4
208 Vol	ts												
SUA1	А	61RD3610-RD	108	32.9	650	208	7	2.1	R22A	Y	0.200	5.1	65.9
SUA6	А	61RE3105-RD	264	80.5	1560	208	7	2.1	R22A	Y	0.254	6.5	27.7

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

Catalog		Heating cable	Heate	d length	Nominal	Cable voltage		l lead gth 1	Cold lead	Joint	heatin	ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)
SUB19	В	61RD3200-RD	245	74.7	885	208	15	4.6	R25A	Υ	0.248	6.3	49.0
SUB20	В	61RE3105-RD	340	103.6	1210	208	15	4.6	R25A	Y	0.254	6.5	35.7
SUB21	В	61RE4600-RD	440	134.1	1640	208	15	4.6	R25A	Υ	0.274	7.0	26.5
SUB22	В	61RE4400-RD	525	160.0	2060	208	15	4.6	R25A	Y	0.265	6.7	20.9
240 Vol	ts												
SUB19	В	61RD3200-RD	245	74.7	1175	240	15	4.6	R25A	Υ	0.248	6.3	49.0
SUB20	В	61RE3105-RD	340	103.6	1615	240	15	4.6	R25A	Y	0.254	6.5	35.7
SUB21	В	61RE4600-RD	440	134.1	2180	240	15	4.6	R25A	Y	0.274	7.0	26.5
SUB22	В	61RE4400-RD	525	160.0	2745	240	15	4.6	R25A	Y	0.265	6.7	20.9
277 Vol	ts and 48	30 Volts, 3-phase	Wye										
SUB19	В	61RD3200-RD	245	74.7	1565	277	15	4.6	R25A	Υ	0.248	6.3	49.0
SUB20	В	61RE3105-RD	340	103.6	2150	277	15	4.6	R25A	Υ	0.254	6.5	35.7
SUB21	В	61RE4600-RD	440	134.1	2900	277	15	4.6	R25A	Y	0.274	7.0	26.5
SUB22	В	61RE4400-RD	525	160.0	3650	277	15	4.6	R25A	Y	0.265	6.7	20.9
347 Vol	ts and 60	00 Volts, 3-phase	Wye										
SUB11	В	61RD3390-RD	225	68.6	1400	347	15	4.6	R25A	Y	0.212	5.4	87.8
SUB12	В	61RD3200-RD	310	94.5	1950	347	15	4.6	R25A	Y	0.248	6.3	62.1
SUB13	В	61RE3105-RD	428	130.5	2700	347	15	4.6	R25A	Y	0.254	6.5	45.0
SUB14	В	61RE4600-RD	548	167.0	3700	347	15	4.6	R25A	Y	0.274	7.0	32.7

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

FFHP HEATING CABLE SPECIFICATIONS

Catalog		Heating cable	Heate	d length	Nominal power	Cable voltage		lead gth ¹	Cold lead	Joint	heatin	ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)
120 Volts	s and 20	8 Volts, 3-phase	Wye										
FFHP1	В	61RD3610-RD	58	17.7	405	120	15	4.6	R25A	Y	0.200	5.1	35.6
FFHP2	В	61RD3390-RD	72	22.0	510	120	15	4.6	R25A	Y	0.212	5.4	28.2
FFHP3	В	61RD3300-RD	83	25.3	580	120	15	4.6	R25A	Y	0.240	6.1	24.8
FFHP4	В	61RD3200-RD	102	31.1	705	120	15	4.6	R25A	Y	0.248	6.3	20.4
FFHP5	В	61RE3150-RD	117	35.7	820	120	15	4.6	R25A	Y	0.228	5.8	17.6
FFHP6	В	61RE3105-RD	140	42.7	980	120	15	4.6	R25A	Y	0.254	6.5	14.7
FFHP7	В	61RE4800-RD	160	48.8	1125	120	15	4.6	R25A	Y	0.262	6.7	12.8
FFHP8	В	61RE4600-RD	185	56.4	1300	120	15	4.6	R25A	Y	0.274	7.0	11.1
FFHP9	В	61RE4400-RD	226	68.9	1590	120	15	4.6	R25A	Y	0.265	6.7	9.1
FFHP10	В	61RE4300-RD	262	79.9	1830	120	15	4.6	R25A	Y	0.272	6.9	7.9
FFHP11	В	61RE4200-RD	320	97.6	2250	120	15	4.6	R25A	Y	0.285	7.2	6.4
FFHP12	В	61RC4100-RD	426	129.9	2965	120	15	4.6	R30A	Y	0.278	7.1	4.9
FFHP13	В	61RC5651-RD	528	161.0	3675	120	15	4.6	R40A	Y	0.274	7.0	3.9
FFHP14	В	61RC5409-RD	664	202.4	4650	120	15	4.6	R40A	Y	0.303	7.7	3.1

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/-10%

Tolerance on heating cable length: -0% to +3%

nVent.com/RAYCHEM | 377

MI HEATING CABLE

Ontoler		Heating	H <u>eate</u>	d length	Nominal	Cable		l lead gth ¹	Cold	1	heatin	ninal Ig cable neter	Resist-
Catalog number	Design	cable reference	(ft)	(m)	 power (watts) 	voltage (volts)	(ft)	(m)	₋ lead code	Joint type	(in)	(mm)	- ance [∠] (ohms)
208 Volts													
FFHP15	В	61RD3610-RD	101	30.8	700	208	15	4.6	R25A	Y	0.200	5.1	61.8
FFHP16	В	61RD3390-RD	126	38.4	880	208	15	4.6	R25A	Y	0.212	5.4	49.2
FFHP17	В	61RD3300-RD	144	43.9	1000	208	15	4.6	R25A	Y	0.240	6.1	43.3
FFHP18	В	61RD3200-RD	176	53.7	1230	208	15	4.6	R25A	Y	0.248	6.3	35.2
FFHP19	В	61RE3150-RD	203	61.9	1420	208	15	4.6	R25A	Y	0.228	5.8	30.5
FFHP20	В	61RE3105-RD	243	74.1	1700	208	15	4.6	R25A	Y	0.254	6.5	25.4
FFHP21	В	61RE4800-RD	278	84.8	1945	208	15	4.6	R25A	Y	0.262	6.7	22.2
FFHP22	В	61RE4600-RD	320	97.6	2250	208	15	4.6	R25A	Y	0.274	7.0	19.2
FFHP23	В	61RE4400-RD	394	120.1	2745	208	15	4.6	R25A	Y	0.265	6.7	15.8
FFHP24	В	61RE4300-RD	455	138.7	3170	208	15	4.6	R25A	Y	0.272	6.9	13.7
FFHP25	В	61RE4200-RD	557	169.8	3885	208	15	4.6	R25A	Y	0.285	7.2	11.1
240 Volts	;												
FFHP26	В	61RD3610-RD	116	35.4	815	240	15	4.6	R25A	Y	0.200	5.1	70.7
FFHP27	В	61RD3390-RD	145	44.2	1020	240	15	4.6	R25A	Y	0.212	5.4	56.5
FFHP28	В	61RD3300-RD	166	50.6	1160	240	15	4.6	R25A	Y	0.240	6.1	49.7
FFHP29	В	61RD3200-RD	203	61.9	1420	240	15	4.6	R25A	Y	0.248	6.3	40.6
FFHP30	В	61RE3150-RD	234	71.3	1640	240	15	4.6	R25A	Y	0.228	5.8	35.1
FFHP31	В	61RE3105-RD	279	85.1	1965	240	15	4.6	R25A	Y	0.254	6.5	29.3
FFHP32	В	61RE4800-RD	320	97.6	2250	240	15	4.6	R25A	Y	0.262	6.7	25.6
FFHP33	В	61RE4600-RD	370	112.8	2600	240	15	4.6	R25A	Y	0.274	7.0	22.2
FFHP34	В	61RE4400-RD	452	137.8	3185	240	15	4.6	R25A	Y	0.265	6.7	18.1
FFHP35	В	61RE4300-RD	522	159.1	3680	240	15	4.6	R25A	Y	0.272	6.9	15.7
FFHP36	В	61RE4200-RD	640	195.1	4500	240	15	4.6	R25A	Y	0.285	7.2	12.8
277 Volts	and 48	0 Volts, 3-phase	Wye										
FFHP37	В	61RD3610-RD	134	40.9	940	277	15	4.6	R25A	Y	0.200	5.1	81.6
FFHP38	В	61RD3390-RD	168	51.2	1170	277	15	4.6	R25A	Y	0.212	5.4	65.6
FFHP39	В	61RD3300-RD	191	58.2	1340	277	15	4.6	R25A	Y	0.240	6.1	57.3
FFHP40	В	61RD3200-RD	234	71.3	1640	277	15	4.6	R25A	Y	0.248	6.3	46.8
FFHP41	В	61RE3150-RD	270	82.3	1895	277	15	4.6	R25A	Y	0.228	5.8	40.5
FFHP42	В	61RE3105-RD	322	98.2	2270	277	15	4.6	R25A	Y	0.254	6.5	33.8
FFHP43	В	61RE4800-RD	370	112.8	2590	277	15	4.6	R25A	Y	0.262	6.7	29.6
FFHP44	В	61RE4600-RD	426	129.9	3000	277	15	4.6	R25A	Y	0.274	7.0	25.6
FFHP45	В	61RE4400-RD	525	160.1	3655	277	15	4.6	R25A	Y	0.265	6.7	21.0
FFHP46	В	61RE4300-RD	603	183.8	4240	277	15	4.6	R25A	Y	0.272	6.9	18.1
FFHP47	В	61RE4200-RD	740	225.6	5185	277	15	4.6	R25A	Y	0.285	7.2	14.8

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/-10%

Tolerance on heating cable length: -0% to +3%

Catalog		Heating cable	Heated	l length	Nominal power	Cable voltage		lead gth ¹	Cold lead	Joint	heating	ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)
347 Volts	and 60	0 Volts, 3-phase	Wye										
FFHP48	В	61RD3610-RD	168	51.2	1175	347	15	4.6	R25A	Y	0.200	5.1	102.5
FFHP49	В	61RD3390-RD	210	64.0	1470	347	15	4.6	R25A	Y	0.212	5.4	81.9
FFHP50	В	61RD3300-RD	239	72.9	1680	347	15	4.6	R25A	Y	0.240	6.1	71.7
FFHP51	В	61RD3200-RD	294	89.6	2050	347	15	4.6	R25A	Y	0.248	6.3	58.7
FFHP52	В	61RE3150-RD	338	103.0	2375	347	15	4.6	R25A	Y	0.228	5.8	50.7
FFHP53	В	61RE3105-RD	405	123.5	2830	347	15	4.6	R25A	Y	0.254	6.5	42.5
FFHP54	В	61RE4800-RD	465	141.8	3240	347	15	4.6	R25A	Y	0.262	6.7	37.2
FFHP55	В	61RE4600-RD	535	163.1	3750	347	15	4.6	R25A	Y	0.274	7.0	32.1
FFHP56	В	61RE4400-RD	655	199.7	4600	347	15	4.6	R25A	Y	0.265	6.7	26.2
FFHP57	В	61RE4300-RD	755	230.2	5315	347	15	4.6	R25A	Y	0.272	6.9	22.7

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/-10%

Tolerance on heating cable length: -0% to +3%

FFHPC HEATING CABLE SPECIFICATIONS

Catalog		Heating cable	Heatir	ng length	Nominal power	Cable voltage		lead gth ¹	Cold lead	Joint	heatin	ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)
120 Volts													
FFHPC1	D	32SF2900	15	4.6	105	120	7	2.1	C22A	Х	0.140	3.6	137.1
FFHPC2	D	32SA2600	20	6.1	120	120	7	2.1	C22A	Х	0.135	3.4	120.0
FFHPC3	D	32SA2400	25	7.6	145	120	7	2.1	C22A	Х	0.146	3.7	99.3
FFHPC4	D	32SA2275	30	9.1	175	120	7	2.1	C22A	Х	0.153	3.9	82.3
FFHPC5	D	32SA2170	35	10.7	240	120	7	2.1	C22A	Х	0.167	4.2	60.0
FFHPC6	D	32SB2114	40	12.2	315	120	7	2.1	C22A	Х	0.174	4.4	45.7
FFHPC7	D	32SB2114	45	13.7	280	120	7	2.1	C22A	Х	0.174	4.4	51.4
FFHPC8	D	32RD3800-RD	50	15.2	360	120	7	2.1	C22A	Y	0.245	6.2	40.0
FFHPC9	D	32RD3800-RD	55	16.8	330	120	7	2.1	C22A	Y	0.245	6.2	43.6
FFHPC10	D	32RD3600-RD	60	18.3	400	120	7	2.1	C22A	Y	0.255	6.5	36.0
FFHPC11	D	32RD3600-RD	65	19.8	370	120	7	2.1	C22A	Y	0.255	6.5	38.9
FFHPC12	D	32RD3400-RD	70	21.3	515	120	7	2.1	C22A	Y	0.263	6.7	28.0
FFHPC13	D	32RD3400-RD	75	22.9	480	120	7	2.1	C22A	Y	0.263	6.7	30.0
FFHPC14	D	32RD3400-RD	80	24.4	450	120	7	2.1	C22A	Y	0.263	6.7	32.0
FFHPC15	D	32RD3300-RD	85	25.9	565	120	7	2.1	C22A	Y	0.270	6.9	25.5
FFHPC16	D	32RD3300-RD	90	27.4	535	120	7	2.1	C22A	Y	0.270	6.9	26.9
FFHPC17	D	32RE3200-RD	95	29.0	750	120	7	2.1	C22A	Y	0.270	6.9	19.2
FFHPC18	D	32RE3200-RD	100	30.5	720	120	7	2.1	C22A	Y	0.265	6.7	20.0

 $^{\scriptscriptstyle 1}$ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

Type FFHPC cables supplied with a 3/4 in NPT reversed gland connector and pulling eye.

MI HEATING CABLE

Catalog		Heating cable	Heatin	g length	Nominal	Cable voltage		lead gth ¹	Cold lead	Joint	heatin	ninal g cable neter	Resist-
number	Design	reference	(ft)	(m)	 power (watts) 	(volts)	(ft)	(m)	code	type	(in)	(mm)	- ance (ohms)
208 Volts													
FFHPC19	D	32SF1110	25	7.6	155	208	7	2.1	C22A	Х	0.130	3.3	279.1
FFHPC20	D	32SF2750	30	9.1	190	208	7	2.1	C22A	Х	0.157	4.0	227.7
FFHPC21	D	32SA2600	35	10.7	205	208	7	2.1	C22A	Х	0.135	3.4	211.0
FFHPC22	D	32SA2400	40	12.2	270	208	7	2.1	C22A	Х	0.146	3.7	160.2
FFHPC23	D	32SA2275	45	13.7	350	208	7	2.1	C22A	Х	0.153	3.9	123.8
FFHPC24	D	32SA2275	50	15.2	315	208	7	2.1	C22A	Х	0.153	3.9	137.5
FFHPC25	D	32SA2200	55	16.8	390	208	7	2.1	C22A	Х	0.169	4.3	110.9
FFHPC26	D	32SA2170	60	18.3	425	208	7	2.1	C22A	Х	0.167	4.2	101.8
FFHPC27	D	32SA2170	65	19.8	390	208	7	2.1	C22A	Х	0.167	4.2	110.9
FFHPC28	D	32SB2114	70	21.3	540	208	7	2.1	C22A	Х	0.174	4.4	80.1
FFHPC29	D	32SB2114	75	22.9	505	208	7	2.1	C22A	Х	0.174	4.4	85.7
FFHPC30	D	32SB2114	80	24.4	475	208	7	2.1	C22A	Х	0.174	4.4	91.1
FFHPC31	D	32RD3800-RD	85	25.9	635	208	7	2.1	C22A	Y	0.245	6.2	68.1
FFHPC32	D	32RD3800-RD	90	27.4	600	208	7	2.1	C22A	Y	0.245	6.2	72.1
FFHPC33	D	32RD3800-RD	95	29.0	570	208	7	2.1	C22A	Y	0.245	6.2	75.9
FFHPC34	D	32RD3600-RD	100	30.5	720	208	7	2.1	C22A	Y	0.255	6.5	60.1
277 Volts													
FFHPC35	D	32SF1110	30	9.1	230	277	7	2.1	C22A	Х	0.130	3.3	333.6
FFHPC36	D	32SF2900	35	10.7	240	277	7	2.1	C22A	Х	0.140	3.6	319.7
FFHPC37	D	32SF2750	40	12.2	255	277	7	2.1	C22A	Х	0.157	4.0	300.9
FFHPC38	D	32SA2600	45	13.7	285	277	7	2.1	C22A	Х	0.135	3.4	269.2
FFHPC39	D	32SA2400	50	15.2	380	277	7	2.1	C22A	Х	0.146	3.7	201.9
FFHPC40	D	32SA2400	55	16.8	350	277	7	2.1	C22A	Х	0.146	3.7	219.2
FFHPC41	D	32SA2275	60	18.3	465	277	7	2.1	C22A	Х	0.153	3.9	165.0
FFHPC42	D	32SA2275	65	19.8	430	277	7	2.1	C22A	Х	0.153	3.9	178.4
FFHPC43	D	32SA2275	70	21.3	400	277	7	2.1	C22A	Х	0.153	3.9	191.8
FFHPC44	D	32SA2200	75	22.9	500	277	7	2.1	C22A	Х	0.169	4.3	153.5
FFHPC45	D	32SA2200	80	24.4	480	277	7	2.1	C22A	Х	0.169	4.3	159.9
FFHPC46	D	32SA2170	85	25.9	530	277	7	2.1	C22A	Х	0.167	4.2	144.8
FFHPC47	D	32SA2170	90	27.4	500	277	7	2.1	C22A	Х	0.167	4.2	153.5
FFHPC48	D	32SB2114	95	29.0	700	277	7	2.1	C22A	Х	0.174	4.4	109.6
FFHPC49	D	32SB2114	100	30.5	670	277	7	2.1	C22A	Х	0.174	4.4	114.5

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

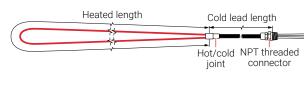
Type FFHPC cables supplied with a 3/4 in NPT reversed gland connector and pulling eye.

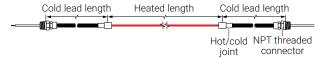
APPROVALS

FM applies only to the bare copper and stainless steel cable for Freezer Frost Heave installation inside of conduits

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many nVent RAYCHEM control and monitoring systems meet the ground-fault protection requirement.


MI HEATING CABLE


COPPER AND LSZH JACKETED COPPER SHEATHED MI CABLE FOR HEAT LOSS REPLACEMENT, FLOOR HEATING AND RADIANT SPACE HEATING

MI Heating Cable Configuration

Type SUA Design A

Type SUB, HLR and FH Design B

PRODUCT OVERVIEW

Heat-loss replacement – replaces heat in concrete floors built over garages, loading docks, arcades, and other cold spaces. The cable is typically attached to the bottom of concrete floors.

Comfort floor heating – warms concrete, tile, stone and marble floors in lobbies, foyers, bathrooms, kitchens and gymnasiums. The cable is typically embedded in concrete or a thick mortar bed.

Radiant space heating – provides primary space heating for rooms with concrete floors. The cable is typically embedded in concrete or a thick mortar bed.

Type HLR heating cables are supplied with a copper sheath and are ideally suited for heat loss replacement applications. Types SUA, SUB and FH heating cables have a copper sheath that is covered with an extruded low-smoke zero-halogen (LSZH) jacket and are suitable for applications where the cable is directly embedded in concrete or mortar floors.

The heating cables are factory assembled with an LSZH jacketed copper sheath cold lead, pre-terminated and ready to connect to a junction box. The copper sheath provides an ideal ground path and allows for a rugged yet flexible heating cable that is easy to install.

The radiant heat provided by the nVent RAYCHEM heating cable allows you to feel comfortable at lower air temperatures, resulting in lower heating costs.

Thermal Management representatives can provide design assistance and help you install the product that meets your goals for an efficient, cost-effective floor heating system.

CABLE CONSTRUCTION

Type HLR heating cable

Sheath Insulation Conductor type Number of conductors Insulation voltage rating Cable diameter (without jacket) Seamless copper Magnesium oxide Alloy or copper 1 600 V 0.120 to 0.205 in (3.0 to 5.2 mm)

Types SUA, SUB and FH heating cableJacketLSZHSheathSeamless copperInsulationMagnesium oxideConductor typeAlloy or copperNumber of conductors1Insulation voltage rating600 VCable diameter (with jacket)0.200 to 0.303 in (5.1 to 7.7 mm)

Cold lead (Type SUA/SUB/HLR/FH cables)

Jacket	LSZH
Sheath	Seamless copper
Insulation	Magnesium oxide
Conductor type	Copper
Number of conductors	1 or 2
Insulation voltage rating	600 V
Cable diameter (with jacket)	0.310 to 0.420 in (7.9 to 10.7 mm)
Gland size (NPT)	1/2 in
Tail length	12 in (30 mm)

MINIMUM INSTALLATION TEMPERATURE

-22°F (-30°C)

MINIMUM BENDING RADIUS

6 times cable diameter

TYPE HLR - HEAT LOSS REPLACEMENT CABLE SPECIFICATIONS

Catalog number	Config- uration	Heating cable reference	Heate lengt (ft)		Nominal power (watts)	Cable voltage (volts)	Colc lead leng (ft)		Cold lead code	Joint type	Nomina cable diamet (in)		Resis- tance ² (ohms)	Tail size (AWG)
120 Volt	ts and 20	8 Volts, 3-ph	nase W	lye										
HLR1	В	61CD3610	70	21.3	330	120	15	4.6	R25A	Y	0.120	3.0	43.6	14
HLR2	В	61CD3610	44	13.4	540	120	15	4.6	R25A	Y	0.120	3.0	26.7	14
HLR3	В	61CD3390	55	16.8	670	120	15	4.6	R25A	Y	0.132	3.4	21.5	14
HLR4	В	61CD3300	63	19.2	760	120	15	4.6	R25A	Y	0.160	4.1	18.9	14
HLR5	В	61CD3200	77	23.5	935	120	15	4.6	R25A	Y	0.168	4.3	15.4	14
HLR6	В	61CE3150	89	27.1	1080	120	15	4.6	R25A	Y	0.148	3.8	13.3	14
HLR7	В	61CE3105	106	32.3	1295	120	15	4.6	R25A	Y	0.174	4.4	11.1	14
HLR8	В	61CE4800	122	37.2	1475	120	15	4.6	R25A	Y	0.182	4.6	9.8	14
HLR9	В	61CE4600	140	42.7	1715	120	15	4.6	R25A	Y	0.194	4.9	8.4	14
HLR10	В	61CE4400	172	52.4	2100	120	15	4.6	R25A	Υ	0.185	4.7	6.9	14
HLR11	В	61CE4300	198	60.4	2425	120	15	4.6	R25A	Y	0.192	4.9	5.9	14
HLR12	В	61CE4200	244	74.4	2950	120	15	4.6	R30A	Υ	0.205	5.2	4.9	12
HLR13	В	61CC4100	322	98.2	3925	120	15	4.6	R40A	Y	0.198	5.0	3.7	10

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

TYPE HLR - HEAT LOSS REPLACEMENT CABLE SPECIFICATIONS

Catalog number	Config- uration	Heating cable reference	Heate lengtl (ft)		Nominal power (watts)	Cable voltage (volts)	Cold lead leng (ft)		Cold lead code	Joint type	Nomina cable diamet (in)		Resis- tance ² (ohms)	Tail size (AWG)
208 Vol		Telefence	(10)	(111)	(watts)	(10113)	(11)	(111)	coue	type	(11)	(11111)	(onins)	(AWO)
HLR14	В	61CD3610	76	23.2	935	208	15	4.6	R25A	Y	0.120	3.0	46.3	14
HLR15	В	61CD3390	95	29.0	1170	208	15	4.6	R25A	Y	0.132	3.4	37.0	14
HLR16	В	61CD3300	109	33.2	1325	208	15	4.6	R25A	Y	0.160	4.1	32.7	14
HLR17	В	61CD3200	133	40.5	1625	208	15	4.6	R25A	Y	0.168	4.3	26.6	14
HLR18	В	61CE3150	154	47.0	1875	208	15	4.6	R25A	Y	0.148	3.8	23.1	14
HLR19	В	61CE3105	184	56.1	2240	208	15	4.6	R25A	Y	0.174	4.4	19.3	14
HLR20	В	61CE4800	211	64.3	2565	208	15	4.6	R25A	Y	0.182	4.6	16.9	14
HLR21	В	61CE4600	243	74.1	2970	208	15	4.6	R25A	Y	0.194	4.9	14.6	14
HLR22	В	61CE4400	296	90.2	3655	208	15	4.6	R25A	Y	0.185	4.7	11.8	14
HLR23	В	61CE4300	345	105.2	4180	208	15	4.6	R25A	Y	0.192	4.9	10.4	14
HLR24	В	61CE4200	420	128.0	5150	208	15	4.6	R30A	Y	0.205	5.2	8.4	12
HLR25	В	61CC4100	560	170.7	6780	208	15	4.6	R40A	Y	0.198	5.0	6.4	10
240 Vol	ts													
HLR26	В	61CD3610	88	26.8	1075	240	15	4.6	R25A	Y	0.120	3.0	53.6	14
HLR27	В	61CD3390	110	33.5	1345	240	15	4.6	R25A	Y	0.132	3.4	42.8	14
HLR28	В	61CD3300	125	38.1	1535	240	15	4.6	R25A	Y	0.160	4.1	37.5	14
HLR29	В	61CD3200	153	46.6	1880	240	15	4.6	R25A	Y	0.168	4.3	30.6	14
HLR30	В	61CE3150	177	54.0	2170	240	15	4.6	R25A	Y	0.148	3.8	26.5	14
HLR31	В	61CE3105	212	64.6	2590	240	15	4.6	R25A	Y	0.174	4.4	22.2	14
HLR32	В	61CE4800	243	74.1	2965	240	15	4.6	R25A	Y	0.182	4.6	19.4	14
HLR33	В	61CE4600	280	85.4	3430	240	15	4.6	R25A	Y	0.194	4.9	16.8	14
HLR34	В	61CE4400	345	105.2	4175	240	15	4.6	R25A	Y	0.185	4.7	13.8	14
HLR35	В	61CE4300	395	120.4	4860	240	15	4.6	R25A	Υ	0.192	4.9	11.9	14
HLR36	В	61CE4200	485	147.9	5940	240	15	4.6	R30A	Y	0.205	5.2	9.7	12
HLR37	В	61CC4100	640	195.1	7900	240	15	4.6	R40A	Y	0.198	5.0	7.3	10
277 Vol	ts and 48	0 Volts, 3-ph	ase W	ye										
HLR38	В	61CD3610	102	31.1	1235	277	15	4.6	R25A	Y	0.120	3.0	62.1	14
HLR39	В	61CD3390	127	38.7	1550	277	15	4.6	R25A	Y	0.132	3.4	49.5	14
HLR40	В	61CD3300	145	44.2	1765	277	15	4.6	R25A	Y	0.160	4.1	43.5	14
HLR41	В	61CD3200	177	54.0	2170	277	15	4.6	R25A	Y	0.168	4.3	35.4	14
HLR42	В	61CE3150	205	62.5	2495	277	15	4.6	R25A	Y	0.148	3.8	30.8	14
HLR43	В	61CE3105	245	74.7	2985	277	15	4.6	R25A	Y	0.174	4.4	25.7	14
HLR44	В	61CE4800	280	85.4	3425	277	15	4.6	R25A	Y	0.182	4.6	22.4	14
HLR45	В	61CE4600	325	99.1	3935	277	15	4.6	R25A	Y	0.194	4.9	19.5	14
HLR46	В	61CE4400	396	120.7	4845	277	15	4.6	R25A	Y	0.185	4.7	15.8	14
HLR47	В	61CE4300	460	140.2	5560	277	15	4.6	R25A	Y	0.192	4.9	13.8	14
HLR48	В	61CE4200	560	170.7	6850	277	15	4.6	R30A	Y	0.205	5.2	11.2	12
HLR49	В	61CC4100	740	225.6	9100	277	15	4.6	R40A	Y	0.198	5.0	8.4	10

 $^{\scriptscriptstyle 1}$ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10% Tolerance on heating cable length: -0% to +3%

MI HEATING CABLE **TYPE HLR - HEAT LOSS REPLACEMENT CABLE SPECIFICATIONS**

Catalog number	Config- uration	Heating cable reference	Heate lengt (ft)		Nominal power (watts)	Cable voltage (volts)	Cold lead leng (ft)		Cold lead code	Joint type	Nomina cable diamete (in)		Resis- tance ² (ohms)	Tail size (AWG)
347 Volt	ts and 60	0 Volts, 3-ph	ase Wy	/e										
HLR50	В	61CD3610	127	38.7	1560	347	15	4.6	R25A	Y	0.120	3.0	77.2	14
HLR51	В	61CD3390	160	48.8	1930	347	15	4.6	R25A	Υ	0.132	3.4	62.4	14
HLR52	В	61CD3300	182	55.5	2205	347	15	4.6	R25A	Y	0.160	4.1	54.6	14
HLR53	В	61CD3200	222	67.7	2715	347	15	4.6	R25A	Υ	0.168	4.3	44.3	14
HLR54	В	61CE3150	258	78.7	3110	347	15	4.6	R25A	Y	0.148	3.8	38.7	14
HLR55	В	61CE3105	306	93.3	3750	347	15	4.6	R25A	Υ	0.174	4.4	32.1	14
HLR56	В	61CE4800	350	106.7	4300	347	15	4.6	R25A	Υ	0.182	4.6	28.0	14
HLR57	В	61CE4600	405	123.5	4955	347	15	4.6	R25A	Υ	0.194	4.9	24.3	14
HLR58	В	61CE4400	495	150.9	6080	347	15	4.6	R25A	Y	0.185	4.7	19.8	14
HLR59	В	61CE4300	575	175.3	6980	347	15	4.6	R25A	Y	0.192	4.9	17.3	14
HLR60	В	61CE4200	700	213.4	8600	347	15	4.6	R30A	Υ	0.205	5.2	14.0	12
480 Vol	ts													
HLR61	В	61CD3610	175	53.4	2160	480	15	4.6	R25A	Y	0.120	3.0	106.7	14
HLR62	В	61CD3390	220	67.1	2685	480	15	4.6	R25A	Υ	0.132	3.4	85.8	14
HLR63	В	61CD3300	250	76.2	3070	480	15	4.6	R25A	Υ	0.160	4.1	75.0	14
HLR64	В	61CD3200	306	93.3	3770	480	15	4.6	R25A	Υ	0.168	4.3	61.1	14
HLR65	В	61CE3150	355	108.2	4330	480	15	4.6	R25A	Υ	0.148	3.8	53.2	14
HLR66	В	61CE3105	424	129.3	5175	480	15	4.6	R25A	Υ	0.174	4.4	44.5	14
HLR67	В	61CE4800	485	147.9	5940	480	15	4.6	R25A	Υ	0.182	4.6	38.8	14
HLR68	В	61CE4600	560	170.7	6860	480	15	4.6	R25A	Υ	0.194	4.9	33.6	14
HLR69	В	61CE4400	690	210.4	8350	480	15	4.6	R25A	Υ	0.185	4.7	27.6	14
600 Vol	ts													
HLR70	В	61CD3610	220	67.1	2685	600	15	4.6	R25A	Υ	0.120	3.0	134.1	14
HLR71	В	61CD3390	275	83.8	3360	600	15	4.6	R25A	Υ	0.132	3.4	107.1	14
HLR72	В	61CD3300	313	95.4	3835	600	15	4.6	R25A	Y	0.160	4.1	93.9	14
HLR73	В	61CD3200	384	117.1	4690	600	15	4.6	R25A	Y	0.168	4.3	76.8	14
HLR74	В	61CE3150	443	135.1	5420	600	15	4.6	R25A	Y	0.148	3.8	66.4	14
HLR75	В	61CE3105	530	161.6	6470	600	15	4.6	R25A	Y	0.174	4.4	55.6	14
HLR76	В	61CE4800	605	184.5	7440	600	15	4.6	R25A	Y	0.182	4.6	48.4	14
HLR77	В	61CE4600	700	213.4	8570	600	15	4.6	R25A	Y	0.194	4.9	42.0	14

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10% Tolerance on heating cable length: -0% to +3%

TYPE SUA/SUB - FLOOR HEATING AND RADIANT SPACE HEATING CABLE SPECIFICATIONS

Catalog	Config-	Heating cable	Heate lengtl		Nominal power	Cable voltage	Cold lead leng		Cold lead	Joint	Nomina cable diamete		Resis- tance ²	Tail size
number	uration	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)	(AWG
120 Volt	s and 20	8 Volts, 3-phase	e Wye											
SUA2	А	61RD3610-RD	55	16.8	425	120	7	2.1	R22A	Υ	0.200	5.1	33.6	14
SUA3	А	61RD3200-RD	140	42.7	500	120	7	2.1	R22A	Υ	0.248	6.3	28.0	14
SUA4	А	61RD3390-RD	68	20.7	550	120	7	2.1	R22A	Υ	0.212	5.4	26.5	14
SUA7	А	61RD3200-RD	95	29.0	750	120	7	2.1	R22A	Υ	0.248	6.3	19.0	14
SUA8	А	61RE3105-RD	177	54.0	800	120	7	2.1	R22A	Υ	0.254	6.5	18.6	14
SUB1	В	61RE3105-RD	132	40.2	1000	120	15	4.6	R25A	Υ	0.254	6.5	13.9	14
SUB2	В	61RE4600-RD	240	73.2	1000	120	15	4.6	R25A	Υ	0.274	7.0	14.4	14
SUB3	В	61RE4400-RD	280	85.4	1300	120	15	4.6	R30A	Υ	0.265	6.7	11.2	12
SUB4	В	61RE4300-RD	320	97.6	1500	120	15	4.6	R30A	Y	0.272	6.9	9.6	12
SUB5	В	61RE4300-RD	260	79.3	1800	120	15	4.6	R40A	Υ	0.272	6.9	7.8	10
SUB6	В	61RE4200-RD	375	114.3	1900	120	15	4.6	R40A	Υ	0.285	7.2	7.5	10
SUB7	В	61RE4200-RD	310	94.5	2300	120	15	4.6	R40A	Υ	0.285	7.2	6.2	10
SUB8	В	61RC4100-RD	550	167.7	2300	120	15	4.6	R60A	Υ	0.278	7.1	6.3	8
SUB9	В	61RC5651-RD	630	192.1	3000	120	15	4.6	R60A	Υ	0.274	7.0	4.7	8
SUB10	В	61RC5409-RD	717	218.6	4300	120	15	4.6	R80A	Υ	0.303	7.7	3.3	6
208 Vol	ts													
SUA1	А	61RD3610-RD	108	32.9	650	208	7	2.1	R22A	Υ	0.200	5.1	65.9	14
SUA6	А	61RE3105-RD	264	80.5	1650	208	7	2.1	R22A	Υ	0.254	6.5	27.7	14
SUB19	В	61RD3200-RD	245	74.7	885	208	15	4.6	R25A	Υ	0.248	6.3	49.0	14
SUB20	В	61RE3105-RD	340	103.7	1210	208	15	4.6	R25A	Υ	0.254	6.5	35.7	14
SUB21	В	61RE4600-RD	440	134.1	1640	208	15	4.6	R25A	Υ	0.274	7.0	26.4	14
SUB22	В	61RE4400-RD	525	160.1	2060	208	15	4.6	R25A	Υ	0.265	6.7	21.0	14
240 Volt	ts													
SUA1	А	61RD3610-RD	108	32.9	900	240	7	2.1	R22A	Υ	0.200	5.1	65.9	14
SUA6	А	61RE3105-RD	264	80.5	2100	240	7	2.1	R22A	Υ	0.254	6.5	27.7	14
SUB19	В	61RD3200-RD	245	74.7	1175	240	15	4.6	R25A	Υ	0.248	6.3	49.0	14
SUB20	В	61RE3105-RD	340	103.7	1615	240	15	4.6	R25A	Υ	0.254	6.5	35.7	14
SUB21	В	61RE4600-RD	440	134.1	2180	240	15	4.6	R25A	Υ	0.274	7.0	26.4	14
SUB22	В	61RE4400-RD	525	160.1	2745	240	15	4.6	R25A	Υ	0.265	6.7	21.0	14
277 Volt	s and 48	0 Volts, 3-phase	e Wye											
SUB19	В	61RD3200-RD	245	74.7	1565	277	15	4.6	R25A	Y	0.248	6.3	49.0	14
SUB20	В	61RE3105-RD	340	103.7	2150	277	15	4.6	R25A	Y	0.254	6.5	35.7	14
SUB21	В	61RE4600-RD	440	134.1	2900	277	15	4.6	R25A	Y	0.274	7.0	26.4	14
SUB22	В	61RE4400-RD	525	160.1	3650	277	15	4.6	R25A	Y	0.265	6.7	21.0	14
347 Volt	s and 60	0 Volts, 3-phase	e Wye											
SUB11	В	61RD3390-RD	225	68.6	1400	347	15	4.6	R25A	Y	0.212	5.4	87.8	14
SUB12	В	61RD3200-RD	310	94.5	1950	347	15	4.6	R25A	Y	0.248	6.3	62.0	14
SUB13	В	61RE3105-RD	428	130.5	2700	347	15	4.6	R25A	Y	0.254	6.5	44.9	14
SUB14	В	61RE4600-RD	548	167.1	3700	347	15	4.6		Y	0.274	7.0	32.9	14

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10%

Tolerance on heating cable length: -0% to +3%

MI HEATING CABLE **TYPE FH - FLOOR HEATING AND RADIANT SPACE HEATING CABLE SPECIFICATIONS**

Catalog	Config-	Heating cable	Heate	d length	Nominal power	Cable voltage		l lead gth ¹	Cold lead	Joint	Nomina diam		Resis- tance ²	Tail size
number	uration	reference	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)	(AWG)
120 Vol	ts and 20)8 Volts, 3-phas	se Wye											
FH1	В	61RD3610-RD	54	16.5	440	120	15	4.6	R25A	Y	0.200	5.1	32.9	14
FH2	В	61RD3390-RD	68	20.7	545	120	15	4.6	R25A	Y	0.212	5.4	26.5	14
FH3	В	61RD3300-RD	77	23.5	625	120	15	4.6	R25A	Y	0.240	6.1	23.1	14
FH4	В	61RD3200-RD	95	29.0	760	120	15	4.6	R25A	Y	0.248	6.3	19.0	14
FH5	В	61RE3150-RD	109	33.2	880	120	15	4.6	R25A	Y	0.228	5.8	16.4	14
FH6	В	61RE3105-RD	130	39.6	1055	120	15	4.6	R25A	Y	0.254	6.5	13.7	14
FH7	В	61RE4800-RD	150	45.7	1200	120	15	4.6	R25A	Y	0.262	6.7	12.0	14
FH8	В	61RE4600-RD	173	52.7	1390	120	15	4.6	R25A	Y	0.274	7.0	10.4	14
FH9	В	61RE4400-RD	210	64.0	1715	120	15	4.6	R25A	Y	0.265	6.7	8.4	14
FH10	В	61RE4300-RD	245	74.7	1960	120	15	4.6	R25A	Y	0.272	6.9	7.4	14
FH11	В	61RE4200-RD	300	91.5	2400	120	15	4.6	R25A	Y	0.285	7.2	6.0	14
208 Vol	ts													
FH12	В	61RD3610-RD	94	28.7	755	208	15	4.6	R25A	Y	0.200	5.1	57.3	14
FH13	В	61RD3390-RD	118	36.0	940	208	15	4.6	R25A	Y	0.212	5.4	46.0	14
FH14	В	61RD3300-RD	134	40.9	1075	208	15	4.6	R25A	Y	0.240	6.1	40.2	14
FH15	В	61RD3200-RD	164	50.0	1320	208	15	4.6	R25A	Y	0.248	6.3	32.8	14
FH16	В	61RE3150-RD	190	57.9	1520	208	15	4.6	R25A	Y	0.228	5.8	28.5	14
FH17	В	61RE3105-RD	225	68.6	1830	208	15	4.6	R25A	Y	0.254	6.5	23.6	14
FH18	В	61RE4800-RD	260	79.3	2080	208	15	4.6	R25A	Y	0.262	6.7	20.8	14
FH19	В	61RE4600-RD	300	91.5	2400	208	15	4.6	R25A	Y	0.274	7.0	18.0	14
FH20	В	61RE4400-RD	365	111.3	2960	208	15	4.6	R25A	Y	0.265	6.7	14.6	14
FH21	В	61RE4300-RD	425	129.6	3390	208	15	4.6	R25A	Y	0.272	6.9	12.8	14
FH22	В	61RE4200-RD	520	158.5	4160	208	15	4.6	R25A	Y	0.285	7.2	10.4	14
240 Vol	ts													
FH23	В	61RD3610-RD	108	32.9	875	240	15	4.6	R25A	Y	0.200	5.1	65.9	14
FH24	В	61RD3390-RD	135	41.2	1095	240	15	4.6	R25A	Y	0.212	5.4	52.7	14
FH25	В	61RD3300-RD	155	47.3	1240	240	15	4.6	R25A	Y	0.240	6.1	46.5	14
FH26	В	61RD3200-RD	190	57.9	1515	240	15	4.6	R25A	Y	0.248	6.3	38.0	14
FH27	В	61RE3150-RD	215	65.5	1785	240	15	4.6	R25A	Y	0.228	5.8	32.3	14
FH28	В	61RE3105-RD	260	79.3	2110	240	15	4.6	R25A	Y	0.254	6.5	27.3	14
FH29	В	61RE4800-RD	300	91.5	2400	240	15	4.6	R25A	Y	0.262	6.7	24.0	14
FH30	В	61RE4600-RD	345	105.2	2780	240	15	4.6	R25A	Y	0.274	7.0	20.7	14
FH31	В	61RE4400-RD	420	128.0	3430	240	15	4.6	R25A	Y	0.265	6.7	16.8	14
FH32	В	61RE4300-RD	490	149.4	3920	240	15	4.6	R25A	Y	0.272	6.9	14.7	14
FH33	В	61RE4200-RD	600	182.9	4800	240	15	4.6	R25A	Y	0.285	7.2	12.0	14
		load longth con												

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/- 10% Tolerance on heating cable length: -0% to +3%

TYPE FH - FLOOR HEATING AND RADIANT SPACE HEATING CABLE SPECIFICATIONS

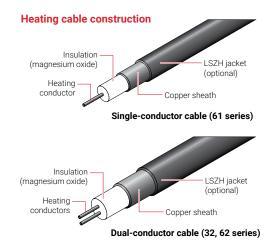
Catalog	Config-	Heating cable	le	eated ngth	Nominal power	Cable voltage	len	l lead gth ¹	Cold lead	Joint	Nom cat diam	ole eter	Resis- tance ²	Tail size
number	uration	reference 0 Volts, 3-phas	(ft)	(m)	(watts)	(volts)	(ft)	(m)	code	type	(in)	(mm)	(ohms)	(AWG)
FH34	B B	61RD3610-RD	e wye 125	38.1	1005	277	15	4.6	R25A	Y	0.200	5.1	76.3	14
FH35	B	61RD3390-RD	125	47.3	1270	277	15	4.6	R25A	Y	0.200	5.4	60.5	14
FH36	B	61RD3300-RD	178	54.3	1440	277	15	4.6	R25A	Y	0.212	6.1	53.4	14
FH37	B	61RD3200-RD	218	66.5	1760	277	15	4.0	R25A	Y	0.240	6.3	43.6	14
FH37	B	61RE3150-RD	253	77.1	2020	277	15	4.6	R25A	Y	0.248	5.8	38.0	14
FH39	B	61RE3105-RD	300	91.5	2020	277	15	4.0 4.6	R25A	Y	0.228	5.8 6.5	30.0	14
	B						15							14
FH40	B	61RE4800-RD	345 400	105.2	2780	277		4.6	R25A	Y	0.262	6.7	27.6	
FH41		61RE4600-RD		122.0	3200	277	15	4.6	R25A	Y Y	0.274	7.0	24.0	14
FH42	B	61RE4400-RD	490	149.4	3915	277	15	4.6	R25A		0.265	6.7	19.6	14
FH43	B	61RE4300-RD	564	172.0	4535	277	15	4.6	R25A	Y	0.272	6.9	16.9	14
FH44	B	61RE4200-RD	690	210.4	5560	277	15	4.6	R25A	Y	0.285	7.2	13.8	14
		0 Volts, 3-phas			1075	0.47	1 Г	1.0		V	0.000	Γ 1	046	14
FH45	B	61RD3610-RD	155	47.3	1275	347	15	4.6	R25A	Y	0.200	5.1	94.6	14
FH46	B	61RD3390-RD	195	59.5	1585	347	15	4.6	R25A	Y	0.212	5.4	76.1	14
FH47	В	61RD3300-RD	220	67.1	1825	347	15	4.6	R25A	Y	0.240	6.1	66.0	14
FH48	В	61RD3200-RD	270	82.3	2230	347	15	4.6	R25A	Y	0.248	6.3	54.0	14
FH49	В	61RE3150-RD	315	96.0	2550	347	15	4.6	R25A	Y	0.228	5.8	47.3	14
FH50	В	61RE3105-RD	376	114.6	3050	347	15	4.6	R25A	Y	0.254	6.5	39.5	14
FH51	В	61RE4800-RD	430	131.1	3500	347	15	4.6	R25A	Y	0.262	6.7	34.4	14
FH52	В	61RE4600-RD	497	151.5	4040	347	15	4.6	R25A	Y	0.274	7.0	29.8	14
FH53	В	61RE4400-RD	610	186.0	4935	347	15	4.6	R25A	Y	0.265	6.7	24.4	14
FH54	В	61RE4300-RD	710	216.5	5650	347	15	4.6	R25A	Y	0.272	6.9	21.3	14
480 Vol														
FH55	В	61RD3610-RD	215	65.5	1760	480	15	4.6	R25A	Y	0.200	5.1	131.2	14
FH56	В	61RD3390-RD	270	82.3	2190	480	15	4.6	R25A	Y	0.212	5.4	105.3	14
FH57	В	61RD3300-RD	310	94.5	2480	480	15	4.6	R25A	Y	0.240	6.1	93.0	14
FH58	В	61RD3200-RD	380	115.9	3030	480	15	4.6	R25A	Y	0.248	6.3	76.0	14
FH59	В	61RE3150-RD	435	132.6	3530	480	15	4.6	R25A	Y	0.228	5.8	65.3	14
FH60	В	61RE3105-RD	520	158.5	4220	480	15	4.6	R25A	Y	0.254	6.5	54.6	14
FH61	В	61RE4800-RD	600	182.9	4800	480	15	4.6	R25A	Υ	0.262	6.7	48.0	14
FH62	В	61RE4600-RD	690	210.4	5565	480	15	4.6	R25A	Y	0.274	7.0	41.4	14
600 Vol	ts													
FH63	В	61RD3610-RD	270	82.3	2185	600	15	4.6	R25A	Υ	0.200	5.1	164.7	14
FH64	В	61RD3390-RD	340	103.7	2715	600	15	4.6	R25A	Υ	0.212	5.4	132.6	14
FH65	В	61RD3300-RD	385	117.4	3120	600	15	4.6	R25A	Y	0.240	6.1	115.5	14
FH66	В	61RD3200-RD	470	143.3	3830	600	15	4.6	R25A	Υ	0.248	6.3	94.0	14
FH67	В	61RE3150-RD	545	166.2	4400	600	15	4.6	R25A	Y	0.228	5.8	81.8	14
FH68	В	61RE3105-RD	650	198.2	5275	600	15	4.6	R25A	Υ	0.254	6.5	68.3	14

¹ To modify cold lead length, contact your nVent sales representative.

² Resistance tolerance: +/-10%

Tolerance on heating cable length: -0% to +3%

Note: For heat loss replacement applications where the cable is attached to the bottom of the concrete floor, contact nVent for additional information.


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many nVent RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

MI HEATING CABLE

COPPER AND LSZH JACKETED COPPER SHEATHED MI CABLE FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS

PRODUCT OVERVIEW

The copper sheath provides an ideal ground path and allows for a rugged yet flexible heating cable that is easy to install. Each heating cable includes a heated section that is joined to a preterminated nonheating cold lead which is ready to connect into a junction box. For corrosive or embedded applications, such as concrete or asphalt snow melting, a cable with a Low Smoke Zero Halogen (LSZH) jacket is required. For embedded applications the red LSZH jacket enhances cable visibility during concrete or asphalt placement. Refer to the tables below for the complete list of approved applications.

For additional information or applications requiring stainless steel sheathed heating cables, contact your nVent representative or call (800) 545-6258.

APPROVED APPLICATIONS AND POWER OUTPUT FOR NONHAZARDOUS AREAS

Bare copper-sheathed heating cable	c-CSA-us	FM	UL		wer output (W/m)
Snow melting on metal roofs	Yes	No	No	15	(49)
De-icing of metal gutters and downspouts	Yes	No	No	15	(49)
De-icing of nonmetallic gutters and downspouts	Yes	No	No	5	(16)
Freeze protection of metal pipes and vessels ²	Yes	Yes	No	18	(59)
Process temperature maintenance (pipes and vessels) ²	Yes	Yes	No	18	(59)
LSZH jacketed copper-sheathed heating cable					
Snow melting in concrete and mastic asphalt slab	Yes	No	Yes	30	(99)
Snow melting in road-grade asphalt slab	Yes	No	Yes	25	(82)
Snow melting in sand/limestone screenings (pavers)	No ¹	No	No	20	(66)
Snow melting on nonmetal roof	Yes	No	No	8	(26)
Pool and Spa Decks	Yes ³	No	No	35	(115)
De-icing of metal gutters and downspouts	Yes	No	No	8	(26)
De-icing of nonmetallic gutters and downspouts	Yes	No	No	5	(16)
Floor heating in concrete slab	Yes	No	No	10	(33)
Frost heave protection - embedded in concrete	Yes	No	No	7	(23)
Freeze protection of metal pipes and vessels – internal	Yes	No	No	8	(26)
Freeze protection of metal pipes and vessels – external	Yes	No	No	8	(26)
Freeze protection of nonmetallic pipes and vessels – internal	Yes	No	No	4	(13)
Freeze protection of nonmetallic pipes and vessels – external	Yes	No	No	4	(13)

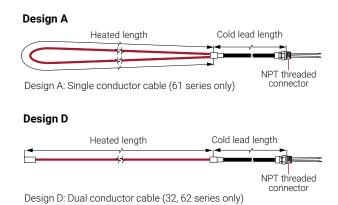
Special permission for paver snow melting is required from the Authority Having Jurisdiction.

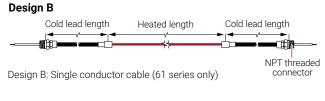
² When designing heating cables for pipe and vessel tracing, the "Max. power output (W/ft)" values may have to be decreased to ensure that the sheath temperature does not exceed the maximum exposure temperature (see page 2) of the cable.

³ Pool and spa deck approval - Canada only.

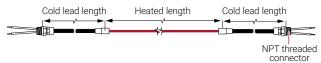
MI HEATING CABLE APPROVED APPLICATIONS AND POWER OUTPUT FOR HAZARDOUS AREAS

Bare copper-sheathed heating cable	c-CSA-us	FM	UL		r output W/ V/m)
Process temperature maintenance (pipes and vessels) ³	Yes	Yes	No	18	(59)
Freeze protection of metal pipes and vessels ³	Yes	Yes	No	18	(59)
De-icing of metal gutters and downspouts ³	Yes	No	No	15	(49)
De-icing of nonmetallic gutters and downspouts	Yes	No	No	5	(16)
LSZH jacketed copper-sheathed heating cable					
Snow melting in concrete and mastic asphalt slab	Yes	No	No	30	(99)
Snow melting in road-grade asphalt slab	Yes	No	No	25	(82)
De-icing of metal gutters and downspouts	Yes	No	No	8	(26)
De-icing of nonmetallic gutters and downspouts	Yes	No	No	5	(16)
Freeze protection of metal pipes and vessels – external	Yes	No	No	8	(26)
Freeze protection of nonmetallic pipes and vessels – external	Yes	No	No	4	(13)


² When designing heating cables for pipe and vessel tracing, and de-icing of metal gutters and downspouts, the "Max. power output (W/ft)" values may have to be decreased to ensure that the sheath temperature does not exceed the maximum exposure temperature of the cable (see below) or the autoignition temperature of gases and vapors present in the hazardous area. For assistance designing heating cables for hazardous areas, contact nVent Technical Support at (800) 545-6258.


TEMPERATURE RATINGS	
Maximum exposure temperature	392°F (200°C) Bare copper-sheathed heating cable 194°F (90°C) LSZH-jacketed heating cable* * LSZH-jacketed cables may be exposed to higher temperatures during installation in asphalt.
Minimum installation temperature	-76°F (-60°C) Bare copper-sheathed heating cable -4°F (-20°C) for UL, -22°F (-30°C) for CSA LSZH-jacketed heating cable

TEMPERATURE ID NUMBER (T-RATING)


To be established by calculating the maximum sheath temperature. Contact nVent for assistance.

BASIC HEATING CABLE DESIGN CONFIGURATIONS

Design E

Design E: Dual conductor cable (32, 62 series only)

HEATING CABLE CATALOG NUMBER

To order an nVent RAYCHEM MI heating cable, it is important to understand the format of our catalog number.

B/61CE4600/150/1600/120/7/C25A/Y/N12 Gland size Hot-cold joint "Y" is standard for copper MI heating cables Cold lead length (in feet) Heating cable voltage Heating cable wattage Heating cable length (in feet) Heating cable reference Heating cable configuration (A, B, D, E)

In the above heating cable catalog number, the length of the heated section and the cold lead are in feet. For metric lengths, the heating cable catalog number would include a suffix "M" after the length, as shown below. A LSZH jacket on the heated section and a LSZH jacket on the cold lead have also been included in the following: B/61RE4600-RD/45.7M/1600/120/2.1M/R25A/Y/N12

Options

Add suffix "/PE" at the end of the catalog number for pulling eye (Design D cables only).

Add suffix "/RG1" at the end of the catalog number for 1" reverse gland (used to make a watertight seal) for Designs A and D cables. Design D cables also available with 1/2" or 3/4" reverse gland ("/RG34" for 3/4" or "/RG12" for 1/2").

Examples

Snow melting for area 1200 sq ft (spacing 7") 6 cables B/61RE3150-RD/343/7000/600/15/R25A/Y/N12

- Heating cable configuration is Design B
- + 600 V rated single conductor LSZH jacketed cable, resistance at 20°C is 0.150 Ω /ft (0.492 Ω /m)
- Each heating cable length is 343 ft (104.5 m)
- Each heating cable wattage is 7000 W at 600 V
- Cold lead is 15 ft (4.5 m) with LSZH jacket
- Cold lead code is R25A
- 1/2-in NPT gland connector

HEATING CABLE REFERENCE DECODING

Pipe tracing for 2 in x 50 ft pipe

1 cable D/32CD3800/52/340/120/3/C22A/Y/N12

- Heating cable configuration is Design D
- + 300 V rated two conductor cable, resistance at 20°C is 0.80 Ω/ft (2.625 $\Omega/m)$
- Heating cable length is 52 ft (15.9 m)
- Heating cable wattage is 340 W at 120 V
- Cold lead is 3 ft (0.9 m)
- · Cold lead code is C22A
- 1/2-in NPT gland connector

	Digit number	Description	
	1	Maximum voltage rating	3 = 300 V, 6 = 600 V
6 1 C D 3 6 1 0	2	Number of conductors	1 or 2
Digit 1 2 3 4 5 6 7 8	3	Sheath material	C = Copper, R = LSZH jacket
61RD3610-RD	4	Conductor material	C, D, or E
Digit 1 2 3 4 5 6 7 8 9	5	Move decimal point to left indicated number of places	1, 2, 3, 4, 5, or 6 places
	6 to 8	Cable resistance ($\Omega/ft)$ to 3 whole numbers (use with digit 5)	3610 = 0.610 Ω /cable foot at 20°C
	9	Jacket color - use only with LSZH jacketed cables	-RD = red color LSZH jacket

Cold leads for copper MI heating cables are available in bare copper or for superior mechanical and corrosion resistance LSZH jacketed copper. Use LSZH jacketed copper for all embedded heating cable applications, such as snow melting and floor heating.

Bare copper cold lead code	LSZH jacketed cold lead code	Maximum voltage (V)	Maximum current (A)	Gland size (NPT)	Gland size reference for catalog number	Tail size (AWG)
Design A, D, E						
C22A	R22A	600	22	1/2"	N12	14
C29A	R29A	600	29	1/2"	N12	12
C38A	R38A	600	38	3/4"	N34	10
C50A	R50A	600	50	3/4"	N34	8
C67A	R67A	600	67	3/4"	N34	6
C90A	R90A	600	90	1"	N1	4
Design B						
C25A	R25A	600	25	1/2"	N12	14
C30A	R30A	600	30	1/2"	N12	12
C40A	R40A	600	40	1/2"	N12	10
C60A	R60A	600	60	1/2"	N12	8
C80A	R80A	600	80	1/2"	N12	6
C105A	R105A	600	105	3/4"	N34	4

SERIES 61 MI HEATING CABLE SPECIFICATIONS (600 V, SINGLE CONDUCTOR)

Heating cable	Nom. cable resistance at 20°C		Nominal cab	le diameter	Max. unjoint	ed cable length	Nominal weight	
reference	Ω/ft	Ω/m	in	mm	ft	m	lb/1000 ft	kg/1000 m
61CD3610	0.610	2.00	0.120	3.0	11712	3571	35	52.1
61CD3390	0.390	1.28	0.132	3.4	9689	2954	45	67.0
61CD3300	0.300	0.984	0.160	4.1	6595	2011	45	67.0
61CD3200	0.200	0.656	0.168	4.3	5987	1825	56	83.3
61CE3150	0.150	0.492	0.148	3.8	7718	2353	49	72.9
61CE3105	0.105	0.344	0.174	4.4	5230	1594	52	77.4
61CE4800	0.0800	0.262	0.182	4.6	4948	1508	54	80.4
61CE4600	0.0600	0.197	0.194	4.9	4269	1301	56	83.3
61CE4400	0.0400	0.131	0.185	4.7	4686	1429	58	86.2
61CE4300	0.0300	0.0980	0.192	4.9	4340	1323	65	96.6
61CE4200	0.0200	0.0660	0.205	5.2	3564	1086	74	110.2
61CC4100	0.0100	0.0328	0.198	5.0	4624	1409	58	86.3
61CC5651	0.00651	0.0214	0.194	4.9	4187	1277	67	99.7
61CC5409	0.00409	0.0134	0.223	5.7	3394	1034	84	125.2
61CC5258	0.00258	0.00846	0.230	5.8	3076	938	98	146.1
61CC5162	0.00162	0.00531	0.246	6.2	2693	821	117	174.2
61CC5102	0.00102	0.00335	0.277	7.0	2056	627	154	229.1
61CC6641	0.000641	0.00210	0.298	7.6	1688	515	179	266.3
61CC6403	0.000403	0.00132	0.340	8.6	1331	406	236	351.1

Notes: 1) To specify an LSZH jacket on the heating cable, replace the "C" (first letter in cable reference) with "R" and add a "-RD" suffix (red jacket colour) after the cable reference number.

Example: 61CD3610 becomes 61RD3610-RD for red jacketed version.

2) Tolerance on cable resistance is \pm 10%.

SERIES 32 MI HEATING CABLE SPECIFICATIONS (300 V, DUAL CONDUCTOR)

Heating cable	Nom. cable resistance at 20°C		Nominal cable diameter		Max. unjointe	d cable length	Nominal weight		
reference		in	mm	ft	m	lb/1000 ft	kg/1000 m		
32CD3800	0.800	2.62	0.165	4.2	5800	1768	46	68.5	
32CD3600	0.600	1.97	0.175	4.4	5676	1730	59	87.8	
32CD3400	0.400	1.31	0.183	4.6	4686	1428	60	89.4	
32CD3300	0.300	0.984	0.190	4.8	4158	1267	62	92.1	
32CE3200	0.200	0.656	0.185	4.7	4686	1428	60	89.4	
32CE3125	0.125	0.410	0.195	5.0	4026	1227	65	96.6	
32CE3100	0.100	0.328	0.208	5.3	3564	1086	65	96.6	
32CE4700	0.0700	0.230	0.230	5.8	3300	1006	110	163.7	
32CE4440	0.0440	0.144	0.260	6.6	2244	684	140	208.2	
32CE4280	0.0280	0.092	0.300	7.6	1782	543	182	270.8	

Notes: 1) To specify a LSZH jacket on the heating cable, replace the "C" (first letter in cable reference) with "R" and add a "-RD" suffix (red jacket colour) after the cable reference number.

Example: 32CD3800 becomes 32RD3800-RD for red jacketed version.

2) Tolerance on cable resistance is ± 10%.

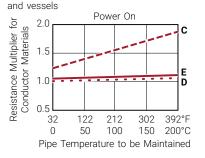
SERIES 62 MI HEATING CABLE SPECIFICATIONS (600 V, DUAL CONDUCTOR)

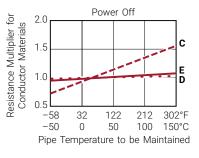
Heating cable	Nom. cable resistance at 20°C Ω/ft Ω/m		Nominal cab	Nominal cable diameter		d cable length	Nominal weight		
reference			in	mm	ft	m	lb/1000 ft	kg/1000 m	
62CE4950	0.0950	0.312	0.283	7.2	1890	576	129	192	
62CE4700	0.0700	0.230	0.309	7.9	1400	427	150	223.2	
62CE4440	0.0440	0.144	0.340	8.6	1170	357	181	269.4	
62CE4280	0.0280	0.0920	0.371	9.4	965	294	224	333.8	
62CC4200	0.0200	0.0656	0.252	6.4	2500	762	109	242.0	
62CC4130	0.0130	0.0427	0.309	7.9	1647	502	150	223.2	
62CC5818	0.00818	0.0268	0.340	8.6	1217	371	189	281.2	
62CC5516	0.00516	0.0169	0.371	9.4	1062	324	236	351.1	
62CC5324	0.00324	0.0106	0.402	10.2	876	267	275	409.1	
62CC5204	0.00204	0.00669	0.449	11.4	706	215	353	525.3	

Notes: 1) To specify a LSZH jacket on the heating cable, replace the "C" (first letter in cable reference) with "R" and add a "-RD" suffix (red jacket colour) after the cable reference number.

Example: 62CE4950 becomes 62RE4950-RD for red jacketed version.

2) Tolerance on cable resistance is ± 10%.


RESISTANCE CORRECTION FACTOR


Various conductor materials behave differently. Based on the application, use the table or graphs below for approximate adjustment of power and resistance as a function of temperature. For detailed design, contact nVent for further assistance.

Applications: Snow melting, floor warming, roof and gutter de-icing, frost-heave prevention

Conductor material	Correction factor
С	1.15
D	1.0
E	1.0

Applications: Freeze protection for pipes and vessels, process temperature maintenance for pipes

Also refer to application tables on previous pages

ŴL

LISTED 421H

Nonhazardous Locations *Hazardous Locations Class I, Div 1 & 2, Groups A, B, C, D Class II, Div 1 & 2, Groups E, F, G

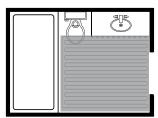
Nonhazardous Locations

* Polymer jacketed MI Heating Cables are not FM approved.

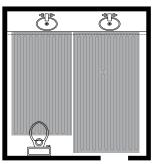
Nonhazardous Locations

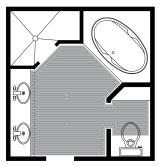
- Nonnazar us___ *Hazardous Locations Class I, Div 1* & 2, Gro Class I, Div 1* & 2, Groups A, B, C, D Class II, Div 1 & 2, Groups E, F, G Class III
 - * Polymer jacketed MI Heating Cables are not approved for CID1 locations

Zone: US: Class I Zone 1 AEx e IIC T* Canada: Ex e IIC T*


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many nVent RAYCHEM control and monitoring systems meet the ground-fault protection requirement.


NUHEAT MAT


PRE-BUILT ELECTRIC FLOOR HEATING SYSTEM

Single Standard Mat

Multiple Standard Mats

Custom Mat

PRODUCT OVERVIEW

Pre-built like an electric blanket, nVent NUHEAT Mat is an electric floor heating system that brings soothing heat to the following surfaces:

- Ceramic or porcelain tile
- Granite
- Marble
- Natural Stone
- · Laminate/Engineered wood floors

NUHEAT Mat is a pre-built floor heating system meaning it does not require any on-site manipulation during installation. Thinset is applied to the subfloor, the pre-built NUHEAT Mat is pressed onto the thinset, and flooring can be installed immediately. NUHEAT Mat is compatible with all standard subfloor material and is only 1/8" thick and making it ideal for installations where minimal floor buildup is desired. The pre-built aspect of NUHEAT Mat guarantees even heat distribution as the heating wires are evenly spaced during production.

NUHEAT Mat is available in over 70 standard mat sizes (squares and rectangles of various dimensions) and are available off-the-shelf. A single standard mat can provide adequate floor heat coverage for most standard bathroom and living areas. Installers can also combine multiple standard mats to heat the desired area.

When full coverage cannot be achieved with NUHEAT standard mats (example: areas with curves, angles, or obstructions), NUHEAT custom mats are available to provide optimal coverage. Once area dimensions are submitted/ confirmed, NUHEAT custom mats are manufactured in only three days and will fit the exact shape of the area indicated in the submitted drawings. Just like NUHEAT standard mats, NUHEAT custom mats are

pre-built thereby guaranteeing even heat distribution without cold spots.

NUHEAT standard and custom mats are available in 120 V and 240 V and produces 12 watts per sqft (up to 15 watts per sqft when required/specified).

KIT CONTENTS

1 NUHEAT Mat floor heating system

1 Installation instruction manual

NUHEAT MAT NUHEAT STANDARD MAT SELECTION TABLE

120 VOLT STANDARD MATS

	Dimensions (inches)	Ohms	Amps	Watts	Model Number			Dimensions (inches)	Ohms	Amps	Watts	Model Number
3.5 ft series	40 x 27	160	0,8	90	F1006	ξ	8 ft series	96 x 24	75	1,6	192	F2506
	40 x 32	135	0,9	107	F1008			96 x 30	60	2,0	240	F2508
	40 x 40	108	1,1	133	F1010			96 x 36	50	2,4	288	F2509
	40 x 48	90	1,3	160	F1012			96 x 42	43	2,8	336	F2510
4 ft series	48 x 24	150	0,8	96	F1206			96 x 48	38	3,2	384	F2512
	48 x 30	120	1,0	120	F1208			96 x 60	30	4,0	480	F2515
	48 x 36	100	1,2	144	F1209			96 x 72	25	4,8	576	F2518
	48 x 48	75	1,6	192	F1212			96 x 84	21	5,6	672	F2521
5 ft series	60 x 24	120	1,0	120	F1506			96 x 96	19	6,4	768	F2525
	60 x 30	96	1,3	150	F1508	ç	9 ft series	108 x 24	67	1,8	216	F2706
	60 x 36	80	1,5	180	F1509			108 x 30	53	2,3	270	F2708
	60 x 42	69	1,8	210	F1510			108 x 36	44	2,7	324	F2709
	60 x 48	60	2,0	240	F1512			108 x 42	38	3,2	378	F2710
	60 x 60	48	2,5	300	F1515			108 x 48	33	3,6	432	F2712
6 ft series	72 x 24	100	1,2	144	F1806			108 x 60	27	4,5	540	F2715
	72 x 30	80	1,5	180	F1808			108 x 72	22	5,4	648	F2718
	72 x 36	67	1,8	216	F1809			108 x 84	19	6,3	756	F2721
	72 x 42	57	2,1	252	F1810			108 x 96	17	7,2	864	F2725
	72 x 48	50	2,4	288	F1812			108 x 108	15	8,1	972	F2727
	72 x 60	40	3,0	360	F1815	1	10 ft series	118 x 24	61	2,0	236	F3006
	72 x 72	33	3,6	432	F1818			118 x 30	49	2,5	295	F3008
7 ft series	84 x 24	86	1,4	168	F2106			118 x 36	41	3,0	354	F3009
	84 x 30	69	1,8	210	F2108			118 x 42	35	3,4	413	F3010
	84 x 36	57	2,1	252	F2109			118 x 48	31	3,9	472	F3012
	84 x 42	49	2,5	294	F2110			118 x 60	24	4,9	590	F3015
	84 x 48	43	2,8	336	F2112			118 x 72	20	5,9	708	F3018
	84 x 60	34	3,5	420	F2115			118 x 84	17	6,9	826	F3021
	84 x 72	29	4,2	504	F2118			118 x 96	15	7,9	944	F3025
	84 x 84	25	4,9	588	F2121			118 x 108	14	8,9	1062	F3027
								118 x 116	13	9,5	1141	F3030

240 VOLT STANDARD MATS

	Dimensions (inches)	Ohms	Amps	Watts	Model Number		Dimensions (inches)	Ohms	Amps	Watts	Model Number
5 ft series	60 x 36	320	0,8	180	G1509	9 ft series	108 x 24	267	0,9	216	G2706
	60 x 42	274	0,9	210	G1510		108 x 30	213	1,1	270	G2708
	60 x 48	240	1,0	240	G1512		108 x 36	178	1,4	324	G2709
	60 x 60	192	1,3	300	G1515		108 x 42	152	1,6	378	G2710
6 ft series	72 x 30	320	0,8	180	G1808		108 x 48	133	1,8	432	G2712
	72 x 36	267	0,9	216	G1809		108 x 60	107	2,3	540	G2715
	72 x 42	229	1,1	252	G1810		108 x 72	89	2,7	648	G2718
	72 x 48	200	1,2	288	G1812		108 x 84	76	3,2	756	G2721
	72 x 60	160	1,5	360	G1815		108 x 96	67	3,6	864	G2725
	72 x 72	133	1,8	432	G1818		108 x 108	59	4,1	972	G2727
7 ft series	84 x 24	343	0,7	168	G2106	10 ft series	118 x 24	244	1,0	236	G3006
	84 x 30	274	0,9	210	G2108		118 x 30	195	1,2	295	G3008
	84 x 36	229	1,1	252	G2109		118 x 36	163	1,5	354	G3009
	84 x 42	196	1,2	294	G2110		118 x 42	140	1,7	413	G3010
	84 x 48	171	1,4	336	G2112		118 x 48	122	2,0	472	G3012
	84 x 60	137	1,8	420	G2115		118 x 60	98	2,5	590	G3015
	84 x 72	114	2,1	504	G2118		118 x 72	81	3,0	708	G3018
	84 x 84	98	2,5	588	G2121		118 x 84	70	3,4	826	G3021
8 ft series	96 x 24	300	0,8	192	G2506		118 x 96	61	3,9	944	G3025
	96 x 30	240	1,0	240	G2508		118 x 108	54	4,4	1062	G3027
	96 x 36	200	1,2	288	G2509		118 x 116	51	4,8	1141	G3030
	96 x 42	171	1,4	336	G2510	12 ft series	144 x 36	133	1,8	432	G144036
	96 x 48	150	1,6	384	G2512		144 x 60	80	3,0	720	G144060
	96 x 60	120	2,0	480	G2515		144 x 72	67	3,6	864	G144072
	96 x 72	100	2,4	576	G2518		144 x 96	50	4,8	1152	G144096
	96 x 84	86	2,8	672	G2521		144 x 108	44	5,4	1296	G144108
	96 x 96	75	3,2	768	G2525		144 x 120	40	6,0	1440	G144120
							144 x 140	34	7,0	1679	G144140
						14 ft series	168 x 96	43	5,6	1344	G168096

168 x 108

168 x 120

168 x 140

20 ft series 240 x 120

38

34

29

24

6,3

7,0

8,2

10,0

1512 G168108

1680 G168120

1960 G168140

2400 G240120

nVent.com/RAYCHEM | 397

NUHEAT MAT NUHEAT CUSTOM MAT – ORDERING DETAILS

If desired coverage cannot be obtained using one or a combination of standard mats, NUHEAT Custom Mats can provide the desired coverage for any area regardless of shape or size.

- 1. Provide an accurate drawing of the area including the full on-site perimeter dimensions, voltage, and desired thermostat location with all obstructions identified (vanities, toilets, vents, etc.). Please ensure that the installer or contractor contact information is provided in the event that we need to verify or confirm the dimensions.
- 2. Submit the drawing to NUHEAT Customer Care Team at **res.customercare@nVent.com.** NUHEAT Customer Care will provide a quote and AutoCAD drawing to confirm the submitted dimensions within 24 hours.
- 3. Once dimensions are accepted by the customer and payment is confirmed, the NUHEAT Custom Mat will be manufactured within three days and shipped to desired location.

APPROVALS

"-W" wet rating for Canada as per Table 1 of C22.2 NO.130-16 and CEC section 62-104.

NUHEAT MAT SPECIFICATIONS

Operating voltage	120 V, 208 V, and 240 V
Power output	12 watts per square foot (15 watts per square foot when required/specified)
Maximum continuous exposure temperature	194°F (90°C)
Minimum installation temperature	50°F (10°C)
Heating cable	Single wire with ground braid outer layer
Cold lead	2-wire, 18 AWG plus ground braid layer; 10 ft (3m) length

ACCESSORIES

	Catalog number	Description
SIGNATURE thermostat	AC0055	WiFi-enabled floor heating thermostat. This programmable thermostat can be controlled using a mobile smart phone app (iOS and Android) or web browser.
HOME thermostat	AC0056	Color touchscreen programmable floor heating thermostat with intuitive user interface and energy usage information.
Element thermostat	AC0057	Non-programmable thermostat for simple control of any electric floor heating system.

NUHEAT CABLE

ELECTRIC FLOOR HEATING SYSTEM

PRODUCT OVERVIEW

nVent NUHEAT Cable is a free-form floor heating cable system that brings soothing heat to the following surfaces:

- Ceramic or porcelain tile
- Granite
- Marble
- Natural Stone
- Laminate/Engineered wood floors

NUHEAT Cable is a floor heating product for kitchens, bathrooms and other spaces where on-site adjustments are necessary to provide the desired heating coverage. Patented plastic cable guides allow the heating cable to be installed on site based on the site dimensions. NUHEAT Cable can be spaced on site to provide 12-15 watts per square foot based on the desired wattage output requirements of the installation.

NUHEAT Cable is available in 33 different sizes to accommodate areas as small as 8 square feet to 240 square feet. Multiple cable kits can be combined to provide heat coverage for the desired area. NUHEAT Cable is available in 120 V and 240 V.

KIT CONTENTS

1 NUHEAT Cable floor heating system

1 Installation instruction manual

NUHEAT CABLE NUHEAT CABLE SELECTION TABLE

Square Foot Coverage								
Standard Spacing*	Alternate Spacing**	Model No.	Cable Length (ft)	Amps	Watts			
120 VOLT CABLE KITS								
8	б	N1C008	29	0.7	80			
12	9	N1C012	47	1.2	138			
15	12	N1C015	57	1.4	170			
25	20	N1C025	98	2.5	299			
30	25	N1C030	120	2.9	343			
40	30	N1C040	148	3.7	442			
50	40	N1C050	188	4.7	562			
60	50	N1C060	234	6.0	719			
70	55	N1C070	265	6.8	810			
80	65	N1C080	318	7.9	947			
85	70	N1C085	334	8.5	1021			
95	80	N1C095	377	9.7	1161			
110	90	N1C110	423	10.8	1299			
120	100	N1C120	474	12.2	1461			
240 VOLT CABLE	KITS							
15	12	N2C015	56	0.7	165			
20	15	N2C020	80	0.9	224			
25	20	N2C025	102	1.3	302			
35	30	N2C035	136	1.7	403			
45	35	N2C045	178	2.2	523			
55	45	N2C055	207	2.6	632			
65	50	N2C065	250	3.1	742			
70	60	N2C070	277	3.5	842			
85	70	N2C085	334	4.3	1020			
90	75	N2C090	358	4.6	1102			
100	85	N2C100	393	5.0	1211			
120	100	N2C120	472	5.9	1427			
135	110	N2C135	529	6.8	1621			
145	120	N2C145	561	7.1	1704			
160	130	N2C160	630	8.0	1914			
170	140	N2C170	665	8.6	2054			
190	160	N2C190	757	9.6	2314			
215	180	N2C215	849	10.8	2589			
240	200	N2C240	953	12.1	2905			

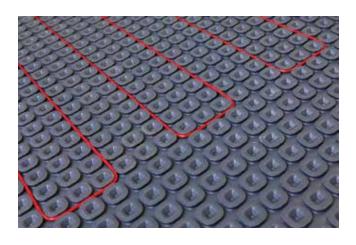
For installations where higher heat output is required, alternating 3"/2" spacing (15 watts/sq ft) may be used.

* 3" Spacing - 12 watts/sq ft ** Alternating 3"/2" spacing - 15 watts/sq ft

"-W" wet rating for Canada as per Table 1 of C22.2 NO.130-16 and CEC section 62-104.

NUHEAT CABLE SPECIFICATIONS

Operating voltage	120 V and 240 V
Power output	12-15 watts per square foot (depending on spacing option chosen)
Minimum bending radius	0.5 in (12 mm)
Maximum ambient temperature	194°F (90°C)
Minimum installation temperature	50°F (10°C)
Heating cable	2-wire, grounded, twisted pair with PVC outer jacket
Cold lead	2-wire, 16-18 AWG plus ground braid; PVC outer jacket, 10 ft (3 m) length


ACCESSORIES

	Catalog number	Description
NUHEAT Membrane (Large Roll)	NUMEM161	Tile underlayment and uncoupling membrane for NUHEAT Cable (161 sq ft roll). For use when uncoupling product is required.
NUHEAT Membrane (Small Roll)	NUMEM054	Tile underlayment and uncoupling membrane for NUHEAT Cable (54 sq ft roll). For use when uncoupling product is required.
SIGNATURE thermostat	AC0055	WiFi-enabled floor heating thermostat. This programmable thermostat can be controlled using a mobile smart phone app (iOS and Android) or web browser.
HOME thermostat	AC0056	Color touchscreen programmable floor heating thermostat with intuitive user interface and energy usage information.
Element thermostat	AC0057	Non-programmable thermostat for simple control of any electric floor heating system.

NUHEAT MEMBRANE

UNCOUPLING AND INTEGRATED FLOOR HEATING UNDERLAYMENT

PRODUCT OVERVIEW

nVent NUHEAT Membrane is a tile underlayment that can be installed over the entire subfloor for uncoupling, crack isolation and waterproofing purposes. NUHEAT Membrane replaces the need for a second layer of plywood or concrete backer board in most tile installations. NUHEAT Membrane comprises of a polypropylene plastic layer that features square-shaped columns which form channels specially designed to embed and hold the NUHEAT Cable Floor Heating System. The square-shaped columns provides a vapor management system which allows moisture to escape from the substrate during the curing process. The polypropylene layer is heat-welded to a non-woven polypropylene fabric which absorbs thinset and bonds the NUHEAT Membrane to the subfloor.

The NUHEAT Cable Floor Heating System can be installed directly into NUHEAT Membrane in areas where heat is desired. Once NUHEAT Cable is installed, tiling can begin immediately using thinset thereby eliminating the need to embed the heating cable in self-leveling compounds.

Additional benefits of NUHEAT Membrane:

- · Enables even heat distribution of the heat of the floor
- · Easy adjustable on site to complexed shapes
- Eliminates need for a second layer of plywood or concrete backer boards
- Variable heat output option with 10, 12 or 15 watt spacing
- Saves installation time and material costs

Installing NUHEAT Membrane with NUHEAT Cable significantly decreases the time, difficulty, floor height, weight, and cost of the overall floor heating installation.

NUHEAT MEMBRANE SELECTION TABLE

	Part			Standard Pac	kage
Catalog number	Number	Description	Dimensions	Weight (lbs)	Size (in)
NUMEM161	AC0105	NUHEAT Membrane - Large Roll (161 sqft)	3'3" x 49.5 ft	30lbs	39" x 14.5"
NUMEM054	AC0106	NUHEAT Membrane - Small Roll (54 sqft)	3'3" x 16.5 ft	10lbs	39" x 9.5"

NUHEAT CABLE SELECTION TABLE

	Square Foot Coverag	e			
	3 3 pillars*	2/3/2 pillars*	2 pillars*		
Model number	10 watts/sq ft	12 watts/sq ft	15 watts/sq ft	Length (ft)	Total Watts
120 Volt Kit					
N1C008	9	8	6	29	80
N1C012	14	12	10	47	138
N1C015	17	15	12	57	170
N1C025	30	25	21	98	299
N1C030	36	31	25	120	343
N1C040	45	38	31	148	442
N1C050	57	48	39	188	562
N1C060	71	60	49	234	719
N1C070	81	68	55	265	810
N1C080	97	82	66	318	947
N1C085	102	86	69	334	1021
N1C095	115	97	78	377	1161
N1C110	129	109	88	423	1299
N1C120	145	122	98	474	1461
240 Volt Kit					
N2C015	17	14	12	56	165
N2C020	24	21	17	80	224
N2C025	31	26	21	102	302
N2C035	41	35	28	136	403
N2C045	54	46	37	178	523
N2C055	63	53	43	207	632
N2C065	76	64	52	250	742
N2C070	84	71	58	277	842
N2C085	102	86	69	334	1020
N2C090	109	92	74	358	1102
N2C100	120	101	82	393	1211
N2C120	145	121	98	472	1427
N2C135	162	136	110	529	1621
N2C145	172	144	116	561	1704
N2C160	193	162	131	630	1914
N2C170	204	171	138	665	2054
N2C190	233	195	157	757	2314
N2C215	261	219	176	849	2589
N2C240	293	246	198	953	2905
N2C240	293	246	198	953	2905

* pillars of the uncoupling membrane.

NUHEAT MEMBRANE ROBINSON FLOOR TEST (ASTM C627) RESULTS

Report number	Substrate	Tile	Joist Spacing	Rating
TNCA-773-14	OSB/Plywood	12 x 12 Porcelain Tile	19.2" O.C	Extra Heavy
TNCA-772-14	Concrete	12 x 12 Porcelain Tile	N/A	Extra Heavy

APPROVALS

NUHEAT MEMBRANE SPECIFICATIONS

Material	Polypropylene plastic heat-welded to a non-woven polypropylene fabric
Thickness	0.22 in (5.5 mm)
Width	39 in (991 mm)
Weight	840 grams/m2
Storage Conditions	Store in a cool and dry place avoiding direct sunlight and heat sources

NUHEAT CABLE SPECIFICATIONS

Operating voltage	120 V, 208 V, and 240 V
Power output	10-15 watts per square foot (depending on wire spacing)
Minimum bending radius	0.5 in (12mm)
Maximum continuous exposure temperature	194°F (90°C)
Minimum installation temperature	50°F (10°C)
Heating cable	2-wire, grounded, twisted pair with PVC outer jacket
Cold lead	2-wire, 16-18 AWG plus ground braid; 10ft (3m) length

ACCESSORIES

	Catalog number	Description
Proband Waterproofing Seam Tape	PRBPE 1505	6" (W) x 16ft (L) waterproofing polyethylene tape used to waterproof seams and perimeter joints for waterproof applications. Comes in pack of 10.
Proband Waterproofing Seam Tape	PRBPE 1530	6" (W) x 98ft (L) waterproofing polyethylene tape used to waterproof seams and perimeter joints for waterproof applications. Comes in pack of 6.

NUHEAT MESH

ELECTRIC FLOOR HEATING SYSTEM

PRODUCT OVERVIEW

nVent NUHEAT Mesh is an electric floor heating system for installation under the following surfaces:

- · Ceramic or porcelain tile
- Granite
- Marble
- Natural stone
- Laminate/Engineered wood floors

The NUHEAT Mesh floor heating system provides comfort heating in bathrooms, showers, kitchens, entryways and other living areas. NUHEAT Mesh's compatibility with all standard subflooring materials and its low 3/16 inch (4.76 mm) profile make it ideal for renovation projects.

The NUHEAT Mesh floor heating system consists of a self-adhesive mesh which allows installers to stick the heating system onto the subfloor during the layout process. The heating cable is attached to the self-adhesive mesh layer using three mesh bands. The mesh bands help keep the heating cable spacing consistent while allowing easy removal of the heating cable during installation in hard-to-reach areas.

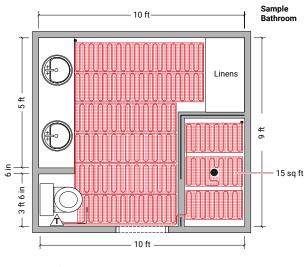
The PVC coated heating cable emit no measurable electromagnetic fields due to its twisted pair design and features a thin mechanical splice and a thin, flexible 10ft long cold lead which is easy to embed in the subfloor and route to the thermostat location.

The floor heating mats are available in 120 V, 208-240 V and in thirty-two (32) different sizes ranging from 12 sq ft to 240 sq ft in a single kit.

KIT CONTENTS

1 NUHEAT Mesh floor heating system

1 Installation instruction manual



[VI C US

SPECIFICATIONS

Operating voltage	120 V, 208 V, and 240 V
Power output	12 watts per square foot (9 watts per square foot @ 208 V)
Minimum bending radius	0.5 in (12 mm)
Minimum cable spacing	3 in (80 mm)
Maximum ambient temperature	194°F (90°C)
Minimum installation temperature	50°F (10°C)
Heating cable	2-wire, grounded, twisted pair with PVC outer jacket
Cold lead	2-wire, 16-18 AWG plus ground braid; 10 ft (3 m) length

ORDERING DETAILS

Select the NUHEAT Mesh kit that is no larger than the heated area. The heated area is the area of the floor that does not include permanent fixtures such as cabinets, toilets, sinks or tubs. The selected kit can be configured on the jobsite to fit the shape of the area to be heated.

For example:

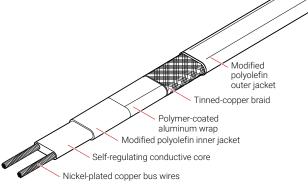
If your bathroom is 9 ft x 10 ft	=	90 sq ft
minus the cabinet area minus the toilet space minus the linen closet minus the shower area	- - -	10 sq ft 6 sq ft 8 sq ft 15 sq ft*
Total area to be heated	=	51 sq ft

Solution: Choose the N1M050 - 50 sq ft for 120 V or N2M045 - 45 sq ft for 240 V. *If the shower area is to be heated, select a N1M015 - 15 sq ft for 120 V or N2M015 - 15 sq ft for 240 V.

Catalog number	Sq Ft Coverage*	Dimensions	Watts	Amps	Resistance
120 V NUHEAT Mesh					
N1M012	12	20" x 8 ft	139	1.2	103
N1M015	15	20" x 9 ft	170	1.4	85
N1M025	25	20" x 15 ft	300	2.5	48
N1M030	30	20" x 19 ft	344	2.9	42
N1M040	40	20" x 23 ft	442	3.7	33
N1M050	50	20" x 29 ft	563	4.7	26
N1M060	60	20" x 36 ft	720	6.0	20
N1M070	70	20" x 41 ft	809	6.7	18
N1M080	80	20" x 49 ft	947	7.9	15
N1M085	85	20" x 52 ft	1022	8.5	14
N1M095	95	20" x 58 ft	1161	9.7	12
N1M110	110	20" x 65 ft	1299	10.8	11
N1M120	120	20" x 73 ft	1461	12.2	10
240 V NUHEAT Mesh					
N2M015	15	20" x 9 ft	165	0.7	349
N2M020	20	20" x 13 ft	224	0.9	258
N2M025	25	20" x 16 ft	302	1.3	191
N2M035	35	20" x 21 ft	403	1.7	143
N2M045	45	20" x 28 ft	523	2.2	110
N2M055	55	20" x 32 ft	632	2.6	91
N2M065	65	20" x 39 ft	742	3.1	78
N2M070	70	20" x 43 ft	842	3.5	68
N2M085	85	20" x 52 ft	1020	4.3	57
N2M090	90	20" x 55 ft	1102	4.6	52
N2M100	100	20" x 61 ft	1211	5.0	48
N2M120	120	20" x 73 ft	1427	5.9	40
N2M135	135	20" x 82 ft	1621	6.8	36
N2M145	145	20" x 87 ft	1704	7.1	34
N2M160	160	20" x 97 ft	1914	8.0	30
N2M170	170	20" x 102 ft	2054	8.6	28
N2M190	190	20" x 117 ft	2314	9.6	25
N2M215	215	20" x 131 ft	2589	10.8	22
N2M240	240	20" x 147 ft	2905	12.1	20

* Square foot coverage based on square room with 2" unheated border.

ACCESSORIES


	Catalog number	Description
Electric Fault Indicator	AC0100	The Electric Fault Indicator is used to verify the continuity of the heating cable and the integrity of its outer jacket during the installation process. The device connects to the cold leads of the cable and if the heating cable is damaged, the alarm on the monitor will sound. The monitor can also be re-used for subsequent installations and to help troubleshoot any problems that may arise.
Heating Wire Repair Kit	AC0014	The Heating Wire Repair Kit is for repairing NUHEAT Mesh heating cable that has been damaged during installation.

HWAT-R2

SELF-REGULATING HEATING CABLE FOR HOT WATER TEMPERATURE MAINTENANCE

Heating cable construction

PRODUCT OVERVIEW

nVent RAYCHEM HWAT self-regulating heating cables are installed on hot water supply pipes underneath standard pipe insulation. The heating cable adjusts its power output to compensate for variations in water temperature and ambient temperature. The heating cable replaces supply-pipe heat losses at the point where the heat loss occurs, thereby providing continuous, energy-efficient, hot water temperature maintenance and eliminating the need for a recirculation system.

Simplified design

Single-pipe HWAT systems eliminate the need for designing complex recirculation systems, with their pumps, piping networks, and complicated flow balancing. Special cases, such as retrofits and multiple pressure zones, are simple to design.

Low installed cost

Installation of the HWAT system is simple. The heating cable can be cut to length, spliced, tee-branched, and terminated at the job site, reducing installation costs. Fewer plumbing components are needed; recirculation piping, pumps, and balancing valves are all eliminated.

Low operating cost

The HWAT system continuously maintains hot water temperature at every point along the supply pipe. Unlike conventional recirculation systems, HWAT systems do not require the overheating of supply water to allow for cooling. The HWAT system reduces the energy requirements of typical hot water systems with reduced heat loss from supply piping, no heat loss from recirculation piping, and no pump to run.

HWAT-ECO and ACS-30 controllers

The HWAT-ECO electronic controller is designed for operation with nVent RAYCHEM HWAT-R2 heating cable only. The HWAT-ECO provides flexible temperature control, energy savings, heat-up cycle function, BMS interface, and nine predefined programs that can be customized by the user. The RAYCHEM ACS-30 controller also incorporates the features of the HWAT-ECO for large systems and multiple application control. The ACS-30 only supports HWAT-R2 heating cable for hot water temperature maintenance applications.

SPECIFICATIONS

Jacket	Modified polyolefin
Braid	Tinned copper
Bus wires	16 AWG nickel-plated copper
Supply voltage	208–277 V (277 V only when used with the ACS-30 Control System)
Minimum bend radius	0.5 in (12 mm)

PRODUCT CHARACTERISTICS (NOIM	NAL)		
Catalog number	HWAT-R2		
Jacket color	Red		
Maintain temperature range*	105°F (40°C) to 140°F (60°C)		
Weight	230 lbs/1000 ft (0.35 kg/m)		
Dimensions			
Width	0.72 in (18 mm)		
Thickness	0.38 in (10 mm)		

* When designed in accordance with the HWAT System Product Selection and Design Guide

DESIGN AND INSTALLATION

For proper design and installation, use the Design section of the HWAT System Product Selection and Design Guide (H57538) and the HWAT System Installation and Operations Manual (H57548).

MAXIMUM CIRCUIT LENGTH FT (M)

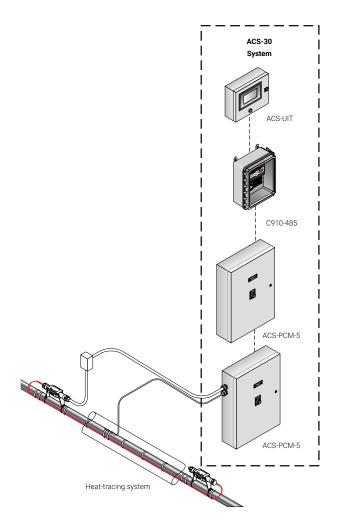
DDODUCT CHADACTEDISTICS (NOMINAL)

	HWAT-R2
Breaker size	@208 V
30 A	500 (150)
20 A	330 (100)
15 A	250 (75)

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with nVent requirements, agency certifications, and national electrical codes, 30-mA ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

APPROVALS


Pipe Heating Cable

HWAT heating cables are UL Listed, CSA Certified, and FM Approved when used with the appropriate agency-approved Raychem components and accessories

ACS-30

MULTIPOINT COMMERCIAL HEAT-TRACING SYSTEM

PRODUCT OVERVIEW

The nVent RAYCHEM ACS-30 Advanced Commercial Control System is a multipoint electronic control and monitoring system for heat-tracing applications. These applications include commercial freeze protection, surface snow melting, roof and gutter de-icing, and flow and temperature maintenance.

The ACS-30 system can control up to 260 circuits with multiple networked ACS-PCM2-5 panels, or RAYCHEM C910-485 controllers for single circuit system extension. The ACS-PCM2-5 panel can directly control up to 5 individual heat-tracing circuits using electromechanical relays rated at 30 A up to 277 V. Four Resistance Temperature Detector (RTD) sensor inputs can be assigned for each heating cable circuit providing a variety of temperature control, monitoring, and alarm options. The ACS-30 can be fitted with 16 RAYCHEM RMM2s, providing an additional 128 temperature inputs to a maximum of 388 inputs.

Control

The ACS-30 is pre-programmed with parameters for commercial hot water temperature maintenance, pipe freeze protection, flow maintenance, freezer frost heave prevention, surface snow melting, roof and gutter de-icing prevention and floor heating applications. The pre-programmed application settings significantly simplify setting up multiple heating cable circuits. Based on the application the ACS-30 can be configured for On/Off, Ambient Sensing, Proportional Ambient Sensing (PASC), and timed duty cycle control modes for HWAT applications.

The ACS-30 measures temperatures with 3-wire, 100-ohm platinum RTDs connected directly to the unit, or through optional Remote Monitoring Modules (RMM2). Each RMM2 accepts up to eight RTDs. Multiple RMM2s are networked over a single cable to the ACS-30, significantly reducing the cost of RTD wiring.

The built-in calendar function for hot water temperature maintenance, floor heating and greasy waste applications provides flexible timed set points providing energy savings.

Monitoring

To assist with energy management the ACS-30 monitors the power consumption of each heating cable circuit for up to five years of operation. The data may be graphically displayed daily, weekly, monthly or yearly. The ACS-30 measures 12 control parameters including ground fault, temperature, and current to ensure system integrity. Configurable alarm settings provide options for local or remote alarms. These alarms can be programmed to send notification of the alarm event by e-mail to user-selected distribution. The system can be set to periodically check for heating cable faults, alerting maintenance personnel of a pending heat tracing problem. This helps avoid costly downtime. Dry contact relays are provided for alarm annunciation back to a Building Management System (BMS).

Ground-fault protection

National electrical codes require ground-fault equipment protection on all heat-tracing circuits. The ACS-30 controller has integrated ground-fault equipment protection and therefore does not require additional ground-fault protection, simplifying installation and reducing costs.

Installation

The ACS-30 system is configured with the User Interface Terminal (ACS-UIT2) that has an LCD color display with touch-screen technology. The ACS-UIT2 provides an easy user interface for programming without keyboards or cryptic labels. The ACS-30 Program Integrator application tool is available to program, edit and download circuit parameters through the local USB port or from a remote location. The ACS-UIT2 comes in a Type 4X enclosure suitable for nonhazardous, indoor or outdoor locations and comes complete with wiring terminals and an alarm signal light.

Communications

ACS-30 units support the Modbus® protocol and are available with RS-232, RS-485 or 10/100Base-T Ethernet communication interface. RAYCHEM ProtoNode multiprotocol gateways are available to integrate the ACS-30 into BACnet® and Metasys® N2 BMS systems.

Complete system

The ACS-30 is supplied as a complete modular system, ready for field connections to convenient power distribution panels and temperature sensor input, reducing the cost of heating cable installation.

ACS-30 SYSTEM

Multipoint temperature control with ground-fault/current/temperature monitoring when used with the ACS-UIT2

The ACS-30 is a multipoint electronic control, monitoring, and power relay system for heat-tracing cables used in commercial heat-tracing applications. The system consists of a RAYCHEM ACS-UIT2 and up to 52 ACS-PCM2-5 power control panels. C910-485 controllers may also be connected to the system for multiple, single circuit extensions. RAYCHEM RMM2 heat-tracing remote monitoring modules may also be used with the ACS-30 system to expand the number of temperature measurement points.

The ACS-30 provides the following alarming features per control point.

- High/low temperature
- Ground fault
- RTD failure

The ACS-30 provides ground-fault monitoring and protection for every heat-tracing circuit and fulfills the requirements of national electrical codes.

ACS-30: HEATING CABLE APPLICATION PROGRAMMING SUMMARY

Control Mode Functions			
Application	Heating cable	Control Mode	Control Settings
Hot Water Temperature Maintenance	HWAT	Preset power duty cycle (HWAT Design Wizard)	 Constant temp Variable schedule Maintain Economy Off Heat Cycle (R2 only)
Floor Heating	RaySol MI heating cable QuickNet	Floor sensing	 Constant temp Variable schedule Maintain Economy Off Circuit override through RTD or external device

Control Mode Functions			
Application	Heating cable	Control Mode	Control Settings
Greasy Waste Disposal and Temperature Maintenance	XL-Trace	Line sensing	 Constant temp Variable schedule Maintain Economy Off
Pipe Freeze Protection	XL-Trace	Ambient, PASC or line sensing	Constant tempCircuit override through external device
Fuel Oil Flow Maintenance	XL-Trace	Ambient, PASC or line sensing	 Constant temp Circuit override through RTD or external device
Freezer Frost Heave Prevention	RaySol MI heating cable	Floor sensing	 Constant temp Variable schedule Maintain Off
Surface Snow Melting	ElectroMelt MI Heating Cable	Ambient or surface temp External controller	Constant temp External snow controller
Roof and Gutter De-icing	IceStop MI Heating Cable	Ambient or surface temp External controller	Constant temp External snow controller

TEMPERATURE MONITOR ONLY

Five temperature monitor only channels


Low and high temperature alarms

VARIABLE SCHEDULE

Setpoint calendar with:

- 7 days/week calendar
- 48 1/2 hr time blocks/day
- Daily schedule copy function

ACS-UIT2 (USER INTERFACE TERMINAL)

General Approvals

The RAYCHEM ACS-30 User Interface Terminal is a panel-mounted display for use with the ACS panel. The ACS-UIT2 has an 8.4 inch (21.7 cm) VGA color display with touch-screen technology, and provides an easy user interface for programming without keyboards or cryptic labels. It has RS-485, RS-232, or 10/100Base-T Ethernet communications ports that allow communication with external Distributed Control Systems or Building Management Systems. BACnet to Modbus protocol gateways with the Modbus registries pre-programmed are available. A USB interface is included for easy configuration and firmware upgrades. The ACS-UIT2 is designed for use on indoor or nonhazardous location installations and is rated for NEMA 4 environments.

Nonhazardous Locations

LR67275

Nonhazardous, indoors and outdoors (IP65, Type 4) 100 – 240 Vac +/-10%, 50/60 Hz -25°C to 50°C (-13°F to 122°F) 26–12 AWG -25°C to 80°C (-13°F to 176°F) 386 mm W x 336 mm H x 180 mm D, (15.21 in. W x 13.21 in. H x 7.09 in. D)

Area of use Supply voltage Operating temperature Supply terminal Storage temperature Dimensions

Alarm outputs

Relay outputs

	light. Relays may be assigned for alarm outputs.
Network connection	
Local port/remote	RS-232/RS-485 ports (RS-485, 2-wire isolated) may be used to communicate with host BMS computers using the RAYCHEM ProtoNode-RER or ProtoNode-RER-10K.
Local RS-232	A non-isolated, 9 pin D sub male
Remote RS-485 #2	10 pin terminal block, $24-12 \text{ AWG}$, (0.2 mm to 2.5 mm ²) wire size
Data rate	9600 to 57600 baud
Maximum cable length	For RS-485 not to exceed 1200 m (4000 ft). Cable to be shielded twisted pair.
Field port	RS-485, 2-wire isolated. Used to communicate with external devices, such as ACS- PCM2-5, RAYCHEM C910-485, and RMM2. Maximum cable length not to exceed 1200 m (4000 ft). Cable to be shielded twisted pair.
Field RS-485 #1	10 pin terminal block, $24-12$ AWG, (0.2 mm to 2.5 mm ²) wire size
Data rate	To 9600 baud
LAN	10/100 Base-T Ethernet port with Link and Activity Status LEDs
USB port	USB 2.0 Host port Type A receptacle (X2)
LCD display	
Display	LCD is a 8.4 inch (21.7 cm) VGA, color TFT transflective device with integral CCFL backlight
Touch screen	4-wire resistive touch screen interface for user entry

ACS-PCM2-5 POWER CONTROL PANEL

General Approvals The ACS-PCM2-5 enclosure is rated NEMA 4/12 and is approved for nonhazardous indoor or outdoor locations. The ACS-PCM2-5 provides ground fault and line current sensing, alarming, switching (electromechanical relays) and RTD inputs for five heat tracing circuits when used with the ACS-UIT2. ACS-30 General (RPN P000001232) panels are available to satisfy special applications which require higher voltage, higher switching capacity, panel heaters, etc. Contact nVent at 1 (800) 545-6258 for design assistance.

Three form C relays rated at 12 A @ 250 Vac. One relay used for common alarm

Nonhazardous Locations

Ambient operating temperature Dimensions Enclosure rating Control supply voltage Weight Humidity Fuse Heating cable circuit contactors Rating Type Quantity

-13°F to 122°F (-25°C to 50°C)
24" W x 24" H x 6.75" D (610 mm W x 610 mm H x 171 mm D)
NEMA 4/12 (indoor/outdoor locations)
90 - 280 V dropped to 12 V with switching power supply
70 lbs (31.75 kg)
0-90% non-condensing
Bussman MDL

3-pole – 30 A/pole 277 Vac Sprecher-Schuh CA7-16-10-12D 5

Temperature sensors

remperature sensors	
Туре	100-ohm platinum RTD, 3-wire, α = 0.00385 ohm/ohm/°C Can be extended with a 3-conductor shielded cable of 20 ohm maximum per conductor
Quantity	Up to five wired directly to the ACS-CRM
Communication to ACS-UIT2, ACS-PCM2-5 p	panels, C910-485 and RMM2
Туре	2-wire RS-485
Cable	One shielded twisted pair
Length	4000 ft (1200 M) maximum
Quantity	Up to 52 ACS-PCM2-5 panels may be connected to one ACS-UIT2
Line current sensors	
Max current	60 A
Accuracy	± 2% of reading
Ground-fault sensors	
Range	10-200 mA
Accuracy	± 2% of reading
Connection terminals	
Power supply/line/load	#22 – 8 AWG
RS-485	#24 – 12 AWG
RTD	#24 – 12 AWG

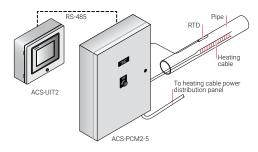
C910-485 ELECTRONIC CONTROLLER (OPTIONAL)

The RAYCHEM C910-485 controller Part No. 10170-026 is a compact, full-featured, microprocessor-based, single-point commercial heating cable control system with integrated equipment ground-fault protection. The C910-485 provides control and monitoring of electric heating cable circuits for commercial heating applications. The C910-485 can be set to monitor and alarm for high and low temperature, low current, and ground-fault level. The C910-485 includes an RS-485 communication module to remotely configure, control and monitor the heating cable circuits through a building management system (BMS).

REMOTE MONITORING MODULE (OPTIONAL)

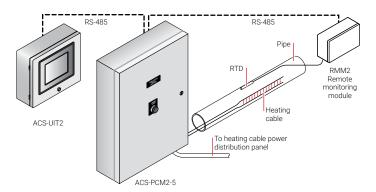
A Remote Monitoring Module (RMM2, Part No: 051778-000) is used to collect additional temperatures for control and monitoring of the heat-tracing circuit by the ACS-PCM2-5 control panel, through the ACS-UIT2 user interface terminal. The RMM2 accepts up to eight RTDs that measure pipe, vessel, or ambient temperatures. Multiple RMM2s communicate with a single ACS-UIT2 to provide centralized monitoring of temperatures. A single twisted-pair RS-485 cable connects up to 16 RMM2s for a total monitoring capability of 128 temperatures. The RMM2s are placed near desired measurement locations. The RMM2 is available for DIN rail mount or pre-installed inside a polycarbonate NEMA-4X enclosure (Part No: 523420-000).

PROTOCOL GATEWAY (OPTIONAL)


The ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between BACnet® or Metasys® N2 Building Management Systems (BMS) and the RAYCHEM ACS-30 controller.

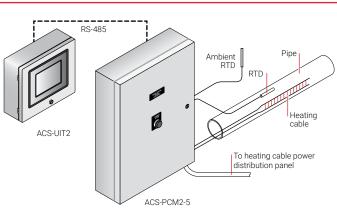
The ProtoNode-RER (Part No P000002008) is for ACS-30 systems with up to 5 PCM panels. The ProtoNode-RER-10K (Part No P000001983) is for ACS-30 systems with up to 34 PCM panels.

TYPICAL CONFIGURATIONS FOR THE RAYCHEM ACS-30 SYSTEM


Individual controls

- Monitors ground-fault current and alarms/trip control contactor upon fault
- · Monitors heater current
- Monitors pipe temperature (via RTD inputs wired back to the RAYCHEM ACS-PCM2-5 or RMM2)

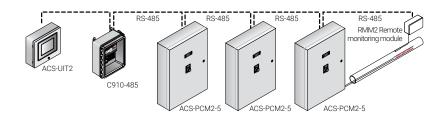
Individual controls with RMM2


- Monitors ground-fault current and alarms/trip control contactor upon fault
- Monitors heater current
- Monitors pipe temperature (via RTD inputs wired back to the RAYCHEM ACS-PCM2-5)
- Using optional RMM2 (remote monitoring modules) mounted in the field, up to 128 RTD inputs can be added to the ACS-30 system
- The RMMs allow the RTD cables to be terminated locally and only a single RS-485 twisted wire pair brought back to the panel. This results in a significant reduction in field wiring.

ACS-30 TYPICAL CONFIGURATIONS FOR THE RAYCHEM ACS-30 SYSTEM

Individual ambient control

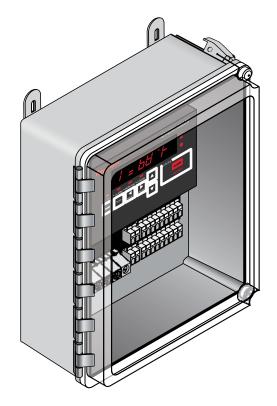
- Monitors ground-fault current and alarms/trip control contactor upon fault
- Monitors heater current
- Monitors pipe temperature (via RTD inputs wired back to the RAYCHEM ACS-PCM2-5 or RMM2)


Individual external control for surface snow melting and roof & gutter application

- Monitors ground-fault current and alarms/trip control contactor upon fault
- Monitors heater current
- Monitors pipe temperature (via RTD inputs wired back to the RAYCHEM ACS-PCM2-5 or RMM2)
- Connects to snow controllers (via RTD input) to power circuits when snow/ice melting is required

RS-485 ACS-UIT2 ACS-UIT2 RS-485 ACS-UIT2 RS-485 Snow controller Concrete Slab Heating Cable To heating cable power distribution panel

Multipanel configuration


- Multiple panels can be ganged together for control using a single RAYCHEM User Interface Terminal
- Communications is accomplished using RS-485 protocol
- Up to 260 heat trace circuits can be supported using this architecture

C910-485

SINGLE-POINT HEAT-TRACING CONTROL SYSTEM

PRODUCT OVERVIEW

The nVent RAYCHEM C910-485 is a compact, full-featured, microprocessor-based, single-point commercial heating cable control system with integrated equipment ground-fault protection. The C910-485 provides control and monitoring of electric heating cable circuits for commercial heating applications. The C910-485 can be set to monitor and alarm for high and low temperature, low current, and ground-fault level. The C910-485 includes an RS-485 communication module to remotely configure, control and monitor the heating cable circuits through a building management system (BMS).

Control

The C910-485 measures temperature with one or two 3-wire 100-ohm platinum RTD(s) connected directly to the unit. The controller may be used in line-sensing, ambient-sensing and proportional ambient-sensing control (PASC) modes. The C910-485 may also be connected into the ACS-30 system for single circuit extensions. When in the ACS-30 system it is controlled by the ACS-UIT2 and has all the application functionality of the ACS-30 system.

Monitoring

A variety of parameters are measured, including ground fault, temperature, and current to ensure system integrity. The system can be set to periodically check the heating cable for faults, alerting maintenance personnel of a heat-tracing problem.Both an isolated solid-state triac relay and a dry contact relay are provided for alarm annunciation back to a building management system (BMS).

Ground-fault protection

National electrical codes require ground-fault equipment protection on all heat-tracing circuits. The C910-485 controllers incorporate ground-fault sensing, alarm, and trip functionality internally. Heating cable circuits equipped with C910-485 controllers do not require additional ground-fault protection equipment, simplifying installation and reducing costs. The C910-485 automatically tests the integrity of the integrated ground-fault circuitry, ensuring protection in the event of a ground fault.

C910-485

Installation

GENERAL

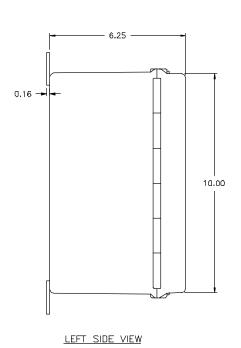
The C910-485 unit comes ready to install right from the box, eliminating the need for custom panel design or field assembly. The NEMA 4X-rated enclosure is approved for use in indoor and outdoor locations. Wiring is as simple as connecting the incoming and outgoing power wiring (up to 277 Vac) and an RTD.

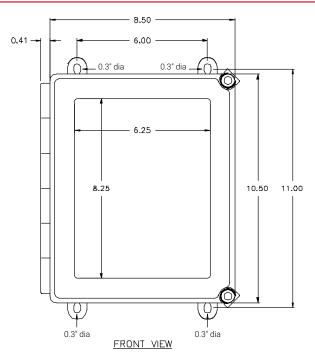
The C910-485 operator interface includes LED displays and function keys that make it easy to use and program. No additional handheld programming devices are needed. Alarm conditions and programming settings are easy to interpret on the full-text front panel. Settings are stored in nonvolatile memory in the event of power failure.

Communications

The C910-485 supports Modbus® protocol and includes an RS-485 communications interface. RAYCHEM ProtoNode multi-protocol gateways are available to integrate the C910-485 or ACS-30 into BACnet® and Metasys® N2 BMS systems.

Area of use	Nonhazardous locations
Approvals	Nonhazardous locations
Supply voltage	100 Vac to 277 Vac, +5 / –10%, 50/60 Hz
	Common supply for controller and heat-tracing circuit
ENCLOSURE	
Protection	Туре 4Х
Materials	FRP
Ambient operating temperature range	-40°F to 140°F (-40°C to 60°C)


Ambient operating temperature range
Ambient storage temperature range
Relative humidity


CONTROL

OONTROL		
Relay type	Double-pole, mechanical	
Voltage, maximum	277 Vac nominal, 50/60 Hz	
Current, maximum	30 A @ 104°F (40°C) derated to 20 A @ 140°F (60°C)	
Control algorithms	EMR: On/off, proportional ambient sensing control (PASC)	
Control range	0°F to 200°F (-18°C to 93°C)	

-40°F to 185°F (-40°C to 85°C) 0% to 90%, noncondensing

TYPICAL ENCLOSURE DIMENSIONS (INCHES)

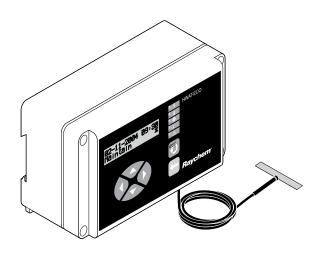
MONITORING

Temperature	Low alarm range 0°F to 180°F (–18°C to 82°C) or OFF High alarm range 0°F to 200°F (–18°C to 93°C) or OFF
Ground fault	Alarm range 20 mA to 100 mA Trip range 20 mA to 100 mA
Current	Low alarm range 0.3 A to 30 A or OFF
Autocycle	Diagnostic test interval adjustable from 1 to 240 minutes or 1 to 240 hours
TEMPERATURE SENSOR INPUTS	Two inputs standard
· ,	
Types	100 Ω platinum RTD, 3-wire, α = 0.00385 ohms/ohm/°C Can be extended with a 3-conductor shielded cable of 20 ohms maximum per conductor
ALARM OUTPUTS	

AC relay	Isolated solid-state triac, SPST, 0.75 A maximum, 100 Vac to 277 Vac nominal	
Dry contact relay	Pilot duty only, 48 Vac/dc, 500 mA maximum, 10 VA maximum resistive switching	
Note: Outputs are configurable as "open on alarm" or "close on alarm"		

PROGRAMMING AND SETTING

Method	Programmable keypad	
Units	Imperial (°F, in.) or Metric (°C, mm)	
Digital display	Actual temperature, control temperature, heater current, ground fault, programming parameter values, alarm values	
LEDs	Heater on, alarm condition, receive / transmit data	
Memory	Nonvolatile, restored after power loss, checksum data checking	
Stored parameters (measured)	Minimum and maximum temperature, maximum ground-fault current, maximum heater current, contactor cycle count, time in use	
Alarm conditions	Low / high temperature, low current Ground-fault alarm, trip RTD failure, loss of programmed values, or EMR failure	
Other	Password protection	
CONNECTION TERMINALS		
Power supply input	Screw terminals, 22–8 AWG	
Heating cable output	Screw terminals, 22–8 AWG	
Ground	Two box lugs, 14–6 AWG	
RTD/alarm/communications	28–12 AWG spring clamp terminals	
MOUNTING		
Enclosure	Surface mounting with four fixing holes on 7.25 in x 11.7 in (184 mm x 297 mm) centers Hole diameter: 0.31 in (8 mm)	
COMMUNICATIONS WITH C910-48	15	
Protocol	ModBus RTU / ASCI I	


Protocol	ModBus RTU / ASCI I
Topology	Multidrop, daisy chain
Cable	Single shielded twisted pair, 26 AWG or larger
Length	4000 ft (1.2km) maximum @ 9600 baud
Quantity	Up to 32 devices without repeater
Address	Programmable

RAYCHEM C910-485 Single-point Heat-Tracing Control System				
Description	Catalog number	Part number	Weight/lbs	
RAYCHEM C910-485 controller in an 8" x 10" FRP enclosure with polycarbonate cover. 2-pole 30 A EMR. Controls a single circuit with a 2-pole electromechanical relay. Includes isolated 2-wite RS-485 communication board. (Approved for nonhazardous locations only)	C910-485	10170-026	15	
RTD Sensors				
100-ohm platinum RTD with 10 foot stainless steel corrugated sheath	RTD10CS	RTD10CS	1.0	
RTD, ambient, cable style	RTD-200	254741	0.1	
RTD, –100°F to 900°F, pipe mounted	RTD4AL	RTD4AL	1.2	
Protocol Gateways				
RAYCHEM ProtoNode-RER: BACnet MST/IP and Metasys N2 protocol gateway	ProtoNode-RER	P000002008	1.3	

HWAT-ECO-16

ELECTRONIC CONTROLLER FOR HOT WATER TEMPERATURE MAINTENANCE SYSTEMS

PRODUCT OVERVIEW

The nVent RAYCHEM HWAT-ECO-16 controller is designed for operation with the HWAT-R2 self-regulating heating cable.

The HWAT-ECO-16 controller provides the following features:

- Flexible temperature control of hot water temperature maintenance systems.
- Integrated function that lowers the maintain temperature during low use hours to save energy.
- Heat-up cycle function that increases the water temperature of a hot water system that is not in use.
- Building Management System (BMS) interface that receives a DC voltage to determine the desired maintain temperature.
- Alarm relay to signal power, temperature or communication problems.
- Pipe temperature monitoring with high temperature alarm and system shut down.
- Nine predefined programs that can be customized by the user.

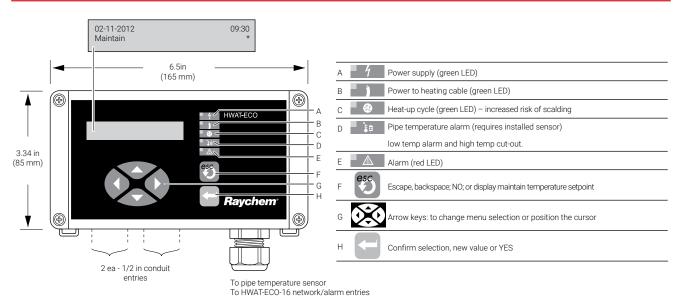
GENERAL

Area of use Approvals Nonhazardous locations

Type 12 Energy Management Equipment (for use with HWAT-R2 only.)

Maintain temperature setpoint Controller ambient exposure temperature Ambient operating range Switching capacity Operating voltage Internal power consumption Circuit protection Internal temperature alarm

BMS control voltage Alarm contacts 105°F (40°C) to 140°F (60°C) 40°F (5°C) to 105°F (40°C) 60°F (15°C) to 80°F (27°C) 16 A @ 208/240 Vac maximum SPST 208/240 (±10%), 60 Hz 2.5 W Maximum 20 A with 30-mA ground-fault protection required; not provided in HWAT-ECO-16 controller 150°F (65°C) 0 – 10 Vdc Maximum 24 Vdc or 24 Vac, 1 A, SPST, voltage free, NO/NC


> Fechnical Data Sheets

Alarm events	Loss of power
	Controller reinitialized
	Internal controller temperature too high
	Water heater temperature too high (cut-out)
	Water heater temperature too low
	Network error
Power correction factor	To increase or decrease your actual pipe maintain temperature or adjust for hot water systems with rigid plastic pipes
Pipe temperature sensor	Thermistor with 13 ft 3 in (4 m) lead. A PT100 RTD may optionally be used. Maximum length 328 ft. (100 m)
Electromagnetic Compatibility (EMC)	Complies to EN 5014-1 for emission and EN 50730-1 for immunity
Real time clock	Leap year correction
Clock accuracy	±10 minutes per year
ENCLOSURE	

Enclosure rating	NEMA 12 (IP54) – indoor use only
Enclosure material	ABS
Mounting	Wall mount with two screws or optional DIN rail
Conduit entries	Two each – 1/2 in conduit entries
Cable gland	3-hole grommet Maximum cable size:
	• 2-wire: 20 AWG (0.5 mm ²)

• 4-wire: 24 AWG (0.2 mm²)

TYPICAL ENCLOSURE DIMENSIONS AND MODULE LAYOUT

PROGRAMMING

Default programs Program settings Nine predefined programs that can be customized by the user There are 48 1/2-hour time blocks of the following program settings: Off, Economy, Maintain, and Heat-up cycle

NETWORKING

Master/slave Master/slave cable Master is selectable in the controller, up to eight slaves can be connected 2-wire, 300 V, minimum 24 AWG twisted pair (328 ft (100 m) maximum)

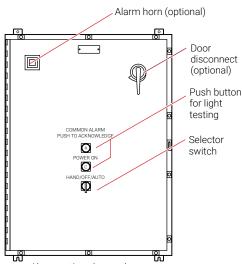
Parameters stored in memory	
Clock back-up time	

All parameters are stored in nonvolatile memory, except date and time Retain time and date for up to 30 days after power loss with rechargeable lithium battery.

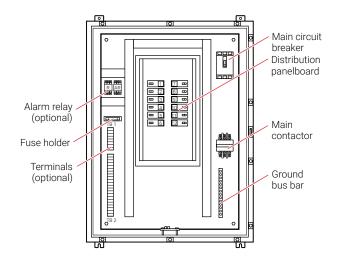
GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of approval agencies, nVent and national and local electrical codes, you must use 30-mA ground-fault equipment protection on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. The HWAT-ECO-16 does not include ground-fault protection.

ORDERING DETAILS


Catalog number	HWAT-ECO-16
Part number	P000001953
Weight	2 lb (1 kg)

Important: The RAYCHEM HWAT-ECO-16 controller is c-UL-us Listed for use with the RAYCHEM HWAT-R2 heating cables only. The warranty and system listing will be invalidated if the HWAT-ECO-16 controller is used with other heating cables.


HTPG

HEAT-TRACING POWER DISTRIBUTION PANEL FOR GROUP CONTROL GROUND-FAULT PROTECTION, MONITORING, AND OPTIONAL ALARM PANEL

Alarm option shown above

PRODUCT OVERVIEW

The nVent RAYCHEM HTPG is a dedicated power distribution, control, ground-fault protection, monitoring, and alarm panel for freeze protection and broad temperature maintenance heat-tracing applications. This wall-mounted enclosure contains an assembled circuit-breaker panelboard.

Panels are equipped with circuit breakers with or without alarm contacts.

The group control package allows the system to operate automatically in conjunction with an external controller/ thermostat.

LOAD POWER

120 / 208 / 240 / 277 Vac

AMBIENT OPERATING TEMPERATURE

32°F (0°C) to 122°F (50°C) (without space heater option)

FIELD WIRE SIZE

14-8 AWG (15-30 A), 8-4 AWG (40-50 A)

To comply with NEC Article 427-55(a), circuit breakers are equipped with the means for lockout in the "Off" position. Square D types QOB-EPD, EDB-EPD

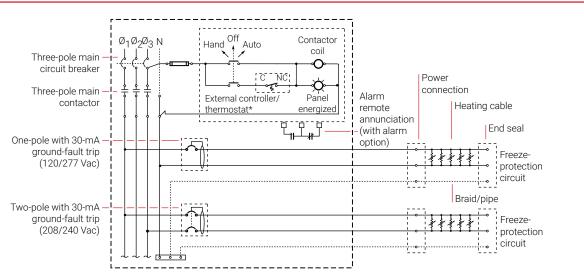
Ground-fault breaker

CIRCUIT BREAKER AMPERAGE RATING

120 Vac 208 / 240 / 277 Vac 20 A, 30 A, 40 A, 50 A 20 A, 30 A, 40 A, 50 A

MAIN CONTACTOR

3 pole

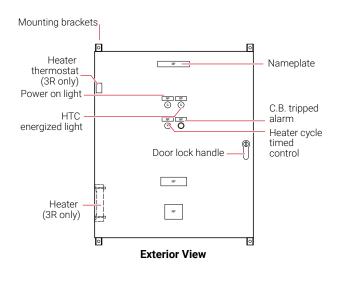

APPROVALS

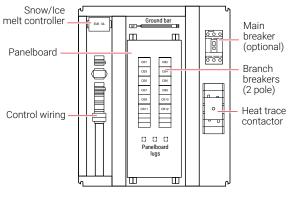
GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

HTPG TYPICAL FREEZE-PROTECTION APPLICATION SCHEMATIC

HTPG comes in a variety of configurations. The following chart outlines the elements that constitute a configuration and the corresponding catalog number.


HTPG - Voltage - Panelboard - C.B. type - # of C.B./# of poles (rating) - Enclosure - MCB - Options


HTPG - 277/480 - 30 - 2 - 14/1P (30) - 4X - 200 - H Voltage Option 120/208 120/240* 277/480 0 = None A = Alarm horn (requires C.B. type 3 or 4) Panelboard size B = Alarm beacon (requires C.B. type 3 or 4) 18 = 18 space panelboard (277 V only) C = Heat-trace contactor failure light 30 = 30 space panelboard D = Door disconnect 42 = 42 space panelboard E = Environmental purge (TYPE 4 or 4X enclosures only) 54 = 54 space panelboard (277 V only) G = Panel power-on light Circuit breaker type H = Space heater and thermostat 2 = GFCB (30-mA trip) without alarm L = Individual circuit breaker trip indication lights (requires C.B. type 4) 3 = GFCB (30-mA trip) with bell alarm P = Heat-trace energized light T = Terminal blocks (prewired) 4 = GFCB (30-mA trip) with relay alarm (includes W = Wired for ETI controller terminal block option). Not available for 277 V Z = Z-purge system (TYPE 4 or 4X enclosures only) Number of circuit breakers/number of SP = Special requirement: Must contain complete description of variance poles (circuit breaker rating) see prior page # of breakers (no bell alarm option) MCB 120 V 208 V 240 V 277V Main circuit breaker and contactor (2P) (2P) (1P) (1P) Panelboard 18 (1-18) (1-8) (1-8)(1 - 8)120/208 size 120/240 277/480 30 (1-30) (1-14) (1-14) (1-14) 30, 50, 70, 125 18 50, 100 50, 100 42 (1-42) (1-20) (1-20) (1-20) 50, 100, 150, 200, 225 50, 60, 80, 150, 175, 200, 225 50, 70, 125, 175, 225 30 54 _ (1-26)42 50, 100, 150, 200, 225 50, 60, 80, 150, 175, 200, 225 50, 70, 125, 175, 225 # of breakers (bell alarm option) 54 50, 70, 125, 175, 225 120 V 208 V 240 V 277 V (1P) (2P) (2P) (1P) Enclosure 18 (1-8) (1-6) (1-6) (1-8) 12= TYPE 12 (indoors) 30 (1-14) (1-10) (1-10) (1-14) 4 = TYPE 4 (outdoors) 42 (1-20) (1-14) (1-14) (1-20) 4X= TYPE 4X (stainless steel-outdoors) 54 (1-26)* Single phase

SMPG1

SNOW MELTING AND DE-ICING POWER DISTRIBUTION AND CONTROL PANEL FOR SINGLE-PHASE HEATING CABLES

Interior View

PRODUCT OVERVIEW

The nVent RAYCHEM SMPG1 is a three-phase power distribution panel for single-phase heating cables that includes ground-fault protection, monitoring and control for snow melting or roof & gutter de-icing systems. The ETI® EUR-5A snow melting and gutter de-icing controller is included with the SMPG. When used with one or more compatible sensors, the EUR-5A automatically controls surface snow melting and roof and gutter de-icing heating cables for minimum energy costs. Applications include pavement, sidewalk, loading dock, roof, gutter, and down spout snow/ice melting in commercial and industrial environments.

The adjustable hold-on timer continues heater operation for up to 10 hours after snow stops to ensure complete melting.

The calibrated 40°F to 90°F (4°C to 32°C) high limit slab sensor prevents excessive temperatures when using constant wattage and MI heating cables. It also permits safe testing at outdoor temperatures too high for continuous heater operation. The temperature sensor is included.

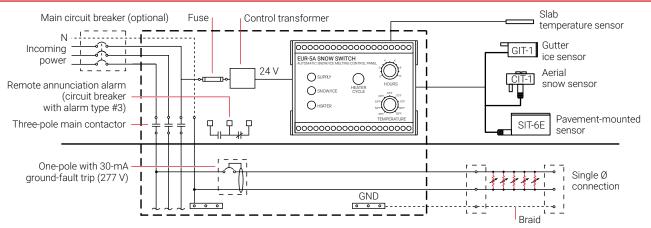
The EUR-5A provides a complete interface for use in environments supervised by an energy management computer (EMC). This feature can also be used for general purpose remote control and annunciation. All sensor and communications wiring is NEC Class 2. This simplifies installation while enhancing fire and shock safety. Multiple sensors provide superior performance by better matching the controller to site performance requirements. The EUR-5A can interface up to six sensors.

For three-phase heating cable configurations, refer to the SMPG3 data sheet (H57814). For additional information on single-phase snow melting designs, contact your nVent representative.

SMPG1 SMPG1

Ambient operating temperature	Indoor installation (NEMA 1/12):14°F (-10°C) to 122°F (50°C)Outdoor installation (NEMA 3R/4):-40°F (-40°C) to 122°F (50°C)(Includes space heater and thermose)	
Main contactor	3-pole 100 A or 200 A	
Main circuit breaker (optional)	Square D type HDL (15–150 A) 3-pole Square D type JDL (150–200 A) 3-pole	
Operating heating cable voltage	208 or 277 V, single phase	
Branch ground-fault breaker	Square D type QOB-EPD / EDB-EPD	
Circuit breaker rating	15-50 A	
Field wire size	#12-8 AWG (15-30 A C.B.), #8-2 AWG (40-	-50 A C.B.)

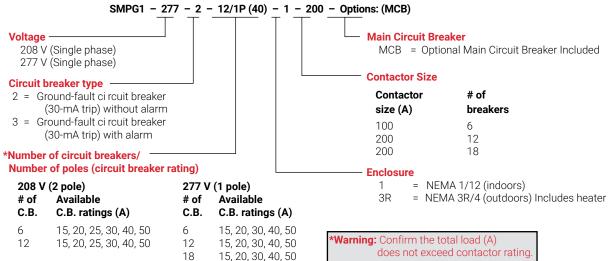
APPROVALS



UL STD. 508A CAN/CSA C22.2 NO. 14

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.


SMPG1 SNOW MELTING AND ROOF AND GUTTER DE-ICING CONTROL SCHEMATIC

CATALOG NUMBER

SMPG1 comes in a variety of configurations. The following chart outlines the elements that constitute a configuration and the corresponding catalog number. If standard configurations do not meet your needs, custom SMPG panels are available and processed under the catalog number SMPG-GENERAL, part number P000000763. Please contact your nVent representative for a custom SMPG panel quotation. Non-standard configurations will carry ETL Certification, not a UL Listing.

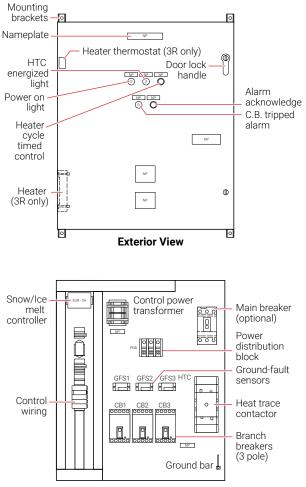
MAIN CIRCUIT BREAKERS

Installed in Control Panel				
MCB rating	Voltage	Catalog number	Part number	
50 A	120-600 V	HDL36050	T1010097	
100 A	120-600 V	HDL36100	T1010101	
110 A	120-600 V	HDL36110	T1010102	
125 A	120-600 V	HDL36125	T1009792	
150 A	120-600 V	HDL36150	T1010087	
175 A	120-600 V	JDL36175	T1010053	
200 A	120-600 V	JDL36200	T1010103	
225 A	120-600 V	JDL36225	T1009945	
250 A	480 or 600 V	JDL36250	T1010104	

EUR-5A

Supply voltage/max current	21 to 28 Vac/2 A
Control transformer	Included
Operating temperature	-40°F (-40°C) to 140°F (60°C)
Hold on time adjustment	0 to 10 hours
High temperature limit adjustment	40°F (4°C) to 90°F (32°C)
Moisture/temperature sensors	Up to six can be used simultaneously. Members of the CIT-1/GIT-1/SIT-6E family in any combination. Locate up to 2,000 ft (609.6 m) for EUR-5A.
Ambient temperature sensor	Included
Remote interface	RCU-3 Remote Control Unit (can operate up to 500 ft [152 m] from panel)
Building/Energy management computer interface	5 Vdc @ 10 mA

SMPG1		
POWER DISTRIBUTION		
Catalog Number	Part Number	Description
SMPG1 Snow Melting and De-Icing	Power Distributio	n and Control Panel - NEMA 1/12
208 V 2-pole NEMA 1 enclosure		
SMPG1-208-2-6/2P(XX)-1-100	P000000456	SMPG with (6) 15–50 A ground-fault breakers, 100 A contactor
SMPG1-208-2-12/2P(XX)-1-200	P000000457	SMPG with (12) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-208-3-6/2P(XX)-1-100	P000000458	SMPG with (6) 15–50 A ground-fault breakers with alarm, 100 A contactor
SMPG1-208-3-12/2P(XX)-1-200	P000000459	SMPG with (12) 15–50 A ground-fault breakers with alarm, 200 A contactor
277 V 1-pole NEMA 1 enclosure		
SMPG1-277-2-6/1P(XX)-1-100	P000000460	SMPG with (6) $15-50$ A ground-fault breakers, 100 A contactor
SMPG1-277-2-12/1P(XX)-1-200	P000000461	SMPG with (12) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-277-2-18/1P(XX)-1-200	P000000462	SMPG with (18) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-277-3-6/1P(XX)-1-100	P000000463	SMPG with (6) 15–50 A ground-fault breakers with alarm, 100 A contactor
SMPG1-277-3-12/1P(XX)-1-200	P000000464	SMPG with (12) 15–50 A ground-fault breakers with alarm, 200 A contactor
SMPG1-277-3-18/1P(XX)-1-200	P000000465	SMPG with (18) 15–50 A ground-fault breakers with alarm, 200 A contactor
SMPG1 Snow Melting and De-Icing F	Power Distribution	and Control Panel - NEMA 3R/4
208 V 2-pole NEMA 3R enclosur	e	
SMPG1-208-2-6/2P(XX)-3R-100	P000000466	SMPG with (6) 15–50 A ground-fault breakers, 100 A contactor
SMPG1-208-2-12/2P (XX)-3R-200	P000000467	SMPG with (12) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-208-3-6/2P(XX)-3R-100	P000000468	SMPG with (6) 15–50 A ground-fault breakers with alarm, 100 A contactor
SMPG1-208-3-12/2P (XX)-3R-200	P000000469	SMPG with (12) 15–50 A ground-fault breakers with alarm, 200 A contactor
277 V 1-pole NEMA 3R enclosure	9	
SMPG1-277-2-6/1P(XX)-3R-100	P000000470	SMPG with (6) 15–50 A ground-fault breakers, 100 A contactor
SMPG1-277-2-12/1P(XX)-3R-200	P000000471	SMPG with (12) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-277-2-18/1P(XX)-3R-200	P000000472	SMPG with (18) 15–50 A ground-fault breakers, 200 A contactor
SMPG1-277-3-6/1P(XX)-3R-100	P000000473	SMPG with (6) 15–50 A ground-fault breakers with alarm, 100 A contactor
SMPG1-277-3-12/1P(XX)-3R-200	P000000474	SMPG with (12) 15–50 A ground-fault breakers with alarm, 200 A contactor
SMPG1-277-3-18/1P(XX)-3R-200	P000000475	SMPG with (18) 15–50 A ground-fault breakers with alarm, 200 A contactor


ACCESSORIES

ETI Sensors	Catalog number	Part number
Pavement-mounted sensor	SIT-6E	P000000112
Aerial snow sensor	CIT-1	512289
Gutter ice sensor	GIT-1	126795
Replacement Controller		
Snow melting and gutter de-icing controller	EUR-5A	T0001527

SMPG3

SNOW MELTING AND DE-ICING POWER DISTRIBUTION AND CONTROL PANEL FOR THREE-PHASE HEATING CABLES

Interior View

PRODUCT OVERVIEW

The nVent RAYCHEM SMPG3 is a three-phase power distribution panel for three-phase heating cables that includes ground-fault protection, monitoring and control for snow melting or roof and gutter de-icing systems. The ETI® EUR-5A snow melting and gutter de-icing controller is included with the SMPG. When used with one or more compatible sensors, the EUR-5A automatically controls surface snow melting and roof and gutter de-icing heating cables for minimum energy costs. Applications include pavement, sidewalk, loading dock, roof, gutter, and down spout snow/ice melting in commercial and industrial environments.

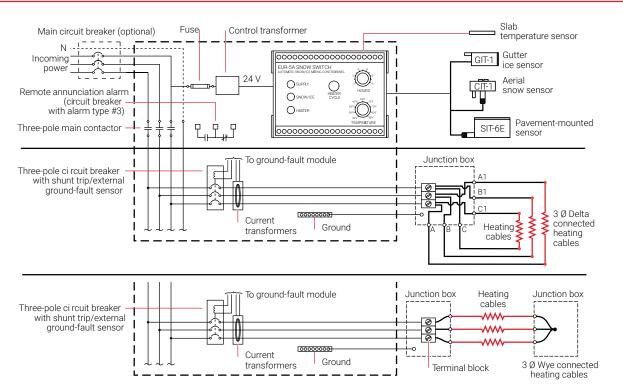
The adjustable hold-on timer continues heater operation for up to 10 hours after snow stops to ensure complete melting.

The calibrated 40°F to 90°F (4°C to 32°C) high limit slab sensor prevents excessive temperatures when using constant wattage and MI heating cables. It also permits safe testing at outdoor temperatures too high for continuous heater operation. The temperature sensor is included.

The EUR-5A provides a complete interface for use in environments supervised by an energy management computer (EMC). This feature can also be used for general purpose remote control and annunciation. All sensor and communications wiring is NEC Class 2. This simplifies installation while enhancing fire and shock safety. Multiple sensors provide superior performance by better matching the controller to site performance requirements. The EUR-5A can interface up to six sensors.

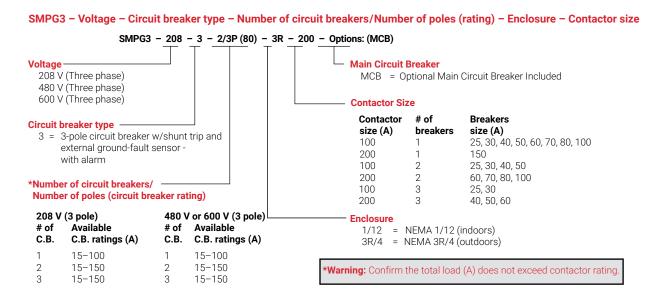
For single-phase heating cable configurations, refer to the SMPG1 data sheet (H57680). For additional information on three-phase snow melting designs, contact your nVent.

Ambient operating temperature	Indoor installation (NEMA 1/12): 14°F (–10°C) to 122°F (50°C) Outdoor installation (NEMA 3R/4): –40°F (–40°C) to 122°F (50°C) (Includes space heater and thermostat)
Main contactor	3-pole 100 A or 200 A
Main circuit (15–150 A) 3-pole breaker (optional) (150–200 A) 3-pole	Square D type HDL (Installed in panel when ordered/needed) Square D type JDL (Installed in panel when ordered/needed)
Operating heating cable voltage	208, 480, or 600 V, three phase
Branch ground-fault breaker	Square D type QOB-1021 (15A–100 A) for 208 V Square D type HDL-1021 (15A–150 A) for 600 V JDL-1021 (160–200) (All the above are Shunt trip C.B. with external ground-fault sensor)
Circuit breaker rating	15-150 A
Field wire size (Copper wires)	#12-8 AWG (15-30 A C.B.), #8-2 AWG (40-50 A C.B.), #6-1/0 AWG (60-100 A C.B.), #1/0 AWG-350 kcmil (150 A C.B.)
	To comply with NEC Article 427-55(a), all circuit breakers are equipped with the means for lockout in the "Off" position.
APPROVALS	


c(UL)US LISTED

UL STD. 508A CAN/CSA C22.2 NO. 14

GROUND-FAULT PROTECTION


To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

SMPG3 SNOW MELTING AND ROOF AND GUTTER DE-ICING CONTROL SCHEMATIC

CATALOG NUMBER

SMPG3 comes in a variety of configurations. The following chart outlines the elements that constitute a configuration and the corresponding catalog number. If standard configurations do not meet your needs, custom SMPG panels are available and processed under the catalog number SMPG-GENERAL, part number P000000763. Please contact your nVent representative for a custom SMPG panel quotation. Non-standard configurations will carry ETL Certification, not a UL Listing.

EUR-5A

Supply voltage/max current	21 to 28 Vac/2 A
Control transformer	Included
Operating temperature	-40°F (-40°C) to 140°F (60°C)
Hold on time adjustment	0 to 10 hours
High temperature limit adjustment	40°F (4°C) to 90°F (32°C)
Moisture/temperature sensors	Up to six can be used simultaneously. Members of the CIT-1/GIT-1/SIT-6E family in any combination. Locate up to 2,000 ft (609.6 m) for EUR-5A.
Ambient temperature sensor	Included
Remote interface	RCU-3 Remote Control Unit (can operate up to 500 ft [152 m] from panel)
Building/energy management computer interface	5 Vdc @ 10 mA

MAIN CIRCUIT BREAKERS

Installed in Control Panel			
MCB rating	Voltage	Catalog number	Part number
50 A	120-600 V	HDL36050	T1010097
100 A	120-600 V	HDL36100	T1010101
110 A	120-600 V	HDL36110	T1010102
125 A	120-600 V	HDL36125	T1009792
150 A	120-600 V	HDL36150	T1010087
175 A	120-600 V	JDL36175	T1010053
200 A	120-600 V	JDL36200	T1010103
225 A	120-600 V	JDL36225	T1009945
250 A	480 or 600 V	JDL36250	T1010104

SMPG3 POWER DISTRIBUTION

Catalog Number	Part Number	Description
SMPG3 Snow Melting and De-Icing Power	Distribution and Cont	rol Panel - NEMA 1/12
208 V 3-pole NEMA 1/12 Enclosure		
SMPG3-208-3-1/3P(XX)-1-100	P000000476	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-208-3-1/3P(XX)-1-200	P000000477	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-208-3-2/3P(XX)-1-100	P000000478	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-208-3-2/3P(XX)-1-200	P000000479	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor
SMPG3-208-3-3/3P(XX)-1-100	P000001381	SMPG with (3) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-208-3-3/3P(XX)-1-200	P000000480	SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor
480 V 3-pole NEMA 1/12 Enclosure		
SMPG3-480-3-1/3P(XX)-1-100	P000000481	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-480-3-1/3P(XX)-1-200	P000001382	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-480-3-2/3P(XX)-1-100	P000000482	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-480-3-2/3P(XX)-1-200	P000000483	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor
SMPG3-480-3-3/3P(XX)-1-100	P000001383	SMPG with (3) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-480-3-3/3P(XX)-1-200	P000000484	SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor
600 V 3-pole NEMA 1/12 Enclosure		
SMPG3-600-3-1/3P(XX)-1-100	P000000494	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-600-3-1/3P(XX)-1-200	P000001384	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-600-3-2/3P(XX)-1-100	P000000495	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-600-3-2/3P(XX)-1-200	P000000496	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor

P000000497

P000000498

SMPG3-600-3-3/3P(XX)-1-100

SMPG3-600-3-3/3P(XX)-1-200

SMPG with (3) 15–100 A breakers, GF sensor with alarm,

SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor

100 A contactor

POWER DISTRIBUTION

Catalog Number	Part Number	Description
SMPG3 Snow Melting and De-Icing Power	Distribution and Con	trol Panel - NEMA 3R/4
208 V 3-pole NEMA 3R/4 Enclosure		
SMPG3-208-3-1/3P(XX)-3R-100	P000000485	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-208-3-1/3P(XX)-3R-200	P000000486	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-208-3-2/3P(XX)-3R-100	P000000487	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-208-3-2/3P(XX)-3R-200	P000000488	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor
SMPG3-208-3-3/3P(XX)-3R-100	P000001385	SMPG with (3) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-208-3-3/3P(XX)-3R-200	P000000489	SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor
480 V 3-pole NEMA 3R/4 Enclosure		
SMPG3-480-3-1/3P(XX)-3R-100	P000000490	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-480-3-1/3P(XX)-3R-200	P000001386	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-480-3-2/3P(XX)-3R-100	P000000491	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-480-3-2/3P(XX)-3R-200	P000000492	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor
SMPG3-480-3-3/3P(XX)-3R-100	P000001387	SMPG with (3) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-480-3-3/3P(XX)-3R-200	P000000493	SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor
600 V 3-pole NEMA 3R/4 Enclosure		
SMPG3-600-3-1/3P(XX)-3R-100	P000000499	SMPG with (1) 15–100 A breaker, GF sensor with alarm, 100 A contactor
SMPG3-600-3-1/3P(XX)-3R-200	P000001388	SMPG with (1) 15–150 A breaker, GF sensor with alarm, 200 A contactor
SMPG3-600-3-2/3P(XX)-3R-100	P000000500	SMPG with (2) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-600-3-2/3P(XX)-3R-200	P000000501	SMPG with (2) 15–150 A breakers, GF sensor with alarm, 200 A contactor
SMPG3-600-3-3/3P(XX)-3R-100	P000000502	SMPG with (3) 15–100 A breakers, GF sensor with alarm, 100 A contactor
SMPG3-600-3-3/3P(XX)-3R-200	P000000503	SMPG with (3) 15–150 A breakers, GF sensor with alarm, 200 A contactor

ACCESSORIES

ETI sensors	Catalog number	Part number
Pavement-mounted sensor	SIT-6E	P000000112
Aerial snow sensor	CIT-1	512289
Gutter ice sensor	GIT-1	126795
Replacement controller		
Snow melting and gutter de-icing controller	EUR-5A	T0001527

HECS

ROOF & GUTTER DE-ICING HIGH-EFFICIENCY CONTROL PANEL SYSTEM FOR ROOF ICE MELT (RIM) SYSTEMS

GENERAL

The High-Efficiency Control System (HECS) is designed to optimize RIM System performance while minimizing energy consumption. At the onset of snow accumulation on the roof, the owner/operator enables the heating system by turning on the main and branch circuit breakers. A temperature sensor measures the outside air temperature and only permits the RIM panel controllers to power the heating cable when the ambient temperature nears freezing (e.g., 34°F). The RIM panel controllers then maintain the RIM heater panels above freezing (e.g., 42°F) so that snowmelt will not refreeze and form icicles and ice dams at the eaves.

The RIM System uses self-regulating heating cables as the source of heat and is designed to handle over 90% of the worst-case winter storm conditions.

ENERGY EFFICIENCY

When ambient temperatures are in the 20-32°F range, only a portion of the heaters' energy is required for proper system operation, so the HECS modulates power to the heaters, keeping energy consumption to a minimum (see Figure 1). If just a simple ambient sensing, on/off controller were used, the RIM cover temperature would range anywhere from 40°F during harsh winter storm conditions (10-15°F, snowing, windy) to 70°F during milder winter conditions (25-32°F, calm, sunny). Figures 2 and 3 show the relative energy consumption for an ambient on/off controlled system versus the HECS for two winter days.

The HECS reduces energy consumption by 40-60% during mild winter days and by 10-40% during colder and stormy winter days. For the average winter, energy savings should average around 30%.

PRODUCT OVERVIEW

The nVent RAYCHEM HECS (High-Efficiency Control System) uses an ambient sensing RTD and temperature controller in series with RAYCHEM roof ice melt (RIM) system panel temperature sensing RTDs, controllers and solid state relay circuitry to provide a highly energy-efficient control system.

The ambient controller will power the RIM panel controllers only when the ambient temperature is between the heater on set point and the low temp cutout set point (both field-adjustable). When this condition is met the RIM panel controllers will adjust the power level to the RIM panels to maximize efficiency and keep them at the maintain temperature set point (field-adjustable). As temperatures drop and winds pick-up, the controllers increase the heating cable output.

EXAMPLES OF STEADY STATE POWER VERSUS AMBIENT CONDITIONS:

Weather Conditions	Percent of Steady State Power
27-30°F, Light Winds	20-25%
27-30°F, Strong Winds	35-50%
20-25°F, Light Winds	40-60%
20-25°F, Strong Winds	50-70%
10-15°F, Light Winds	60-90%
10-15°F, Strong Winds	100%

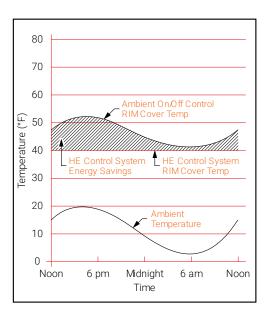


Figure 2 - Harsh winter day

436 | nVent.com/RAYCHEM

LOW AMBIENT TEMPERATURE OPERATIONS

Since snowmelt at the roof/snow interface depends on the roof snow depth, ambient temperature, roof design, and building insulation, there are low ambient temperature conditions when no snowmelting occurs. For new construction in heavy snowfall areas, temperatures below a 0-10°F range will most often create "no snowmelting" conditions. The HECS includes a control panel mounted solid state controller and an eave soffit mounted RTD temperature sensor. The temperature at which the RIM System turns on can be set at the control panel and is adjustable (recommended 34-38°F). In addition, the low-temperature cutout feature can be set at the control panel (recommended 0-10°F) and can then be adjusted up or down based on the local winter conditions for the building. For example, if 10°F is the proper low temperature cutout set point and the winter had 150 hours below 10°F, up to 10% energy savings can be realized when compared to a control system Figure 4 demonstrates how the low temperature cutout option would typically operate. without the low temperature cutout option operating.

SUMMARY

When compared with standard ambient-only temperature control, the High-Efficiency Control System will provide up to 30% energy savings for a typical winter. In addition, up to 10% more energy savings can be realized when using the low temperature cutout feature.

SPECIFICATION

NEMA 4/12 enclosure

Up to 18 branch circuit breakers with ground fault protection

Multiple separate control zones available

Accommodates 1-phase or 3-phase incoming power

Ambient controller displays sensed ambient temperature and heater-on set point

 RIM panel controllers display sensed RIM panel temperature and set point

UL approved panel

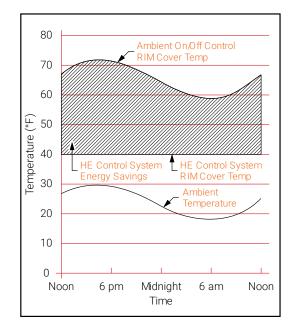
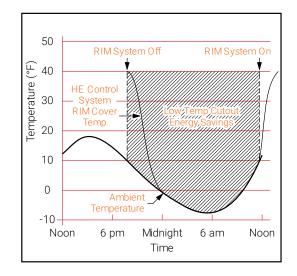
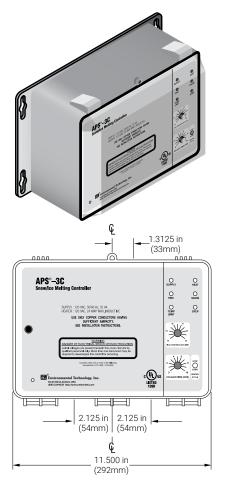
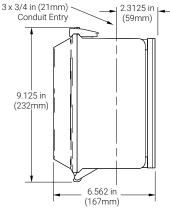


Figure 3 - Mild winter day


Figure 4 - Low temperature cutout operation

APS-3C

SNOW MELTING AND GUTTER DE-ICING CONTROLLER

اطن

PRODUCT OVERVIEW

The ETI® APS-3C snow melting and gutter de-icing controller when used with compatible sensors automatically controls surface snow melting and roof and gutter de-icing heating cables, ensuring minimum operating costs. Typical applications include pavement, sidewalk, loading dock, roof, gutter, and down spout snow/ice melting.

The adjustable hold-on timer continues heater operation for up to 10 hours after snow stops to ensure complete melting. The optional RCU-3 Remote Control Unit can be located where system operation can be conveniently observed. It duplicates many of the controls and indicators on the APS-3C front panel. It is used to clear tracked and drifting snow that may not land on a sensor.

The calibrated 40°F to 90°F (4°C to 32°C) high limit thermostat prevents excessive temperatures when using constant wattage and MI heating cables. It also permits safe testing at outdoor temperatures too high for continuous heater operation. The temperature sensor is included.

The APS–3C provides a relay closure interface for use with energy management computers (EMC). This feature can also be used for general purpose remote control and annunciation and other advanced applications.

All sensor and communications wiring is NEC Class 2. This simplifies installation while enhancing fire and shock safety. Multiple sensors provide superior performance by better matching the controller to site performance requirements. The APS-3C can interface up to six sensors.

The APS-3C does not provide ground-fault protection for the heating cable system. This protection is required and must be provided by other devices such as ground-fault circuit breakers or other control methods.

The APS-3C is an exceptionally capable surface snow melting and roof and gutter de-icing controller. For complete information describing its application, installation, and features, please contact your nVent representative or visit our web site at nVent.com.

GENERAL

Area of use

Approvals

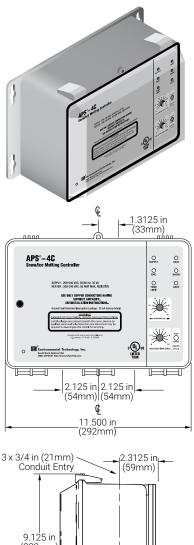
Nonhazardous locations

CUSTED LISTED 109R Type 873 Temperature Regulating Equipment

Protection	NEMA 3R	NEMA 3R		
Cover attachment	Hinged polycarbo	Hinged polycarbonate cover, lockable		
Entries	Three 1-1/16" entr	Three 1-1/16" entries		
Material	Polycarbonate			
Mounting	Wall mounted			
CONTROL				
Supply voltage	APS-3C-120 V: APS-3C-208/240	120 V 50/60 Hz V: 208/240 V 50/60 Hz		
Contact type	Form C			
Maximum ratings	Voltage: 240 V Current: 24 A			
Heater hold-on timer	0 to 10 hours; acti	uated by snow stopping or toggle switch		
System test	Switch toggles the heater cycles to p	e heater contact on and off. If temperature exceeds high limit revent damage.		
SNOW/ICE SENSORS				
Sensor input	Up to 6 sensors; (Up to 6 sensors; CIT-1, GIT-1, SIT-6E		
Circuit type	NEC Class 2	•		
Lead length		Up to 500 ft (152 m) using 18 AWG 3-wire jacketed cable Up to 2,000 ft (609 m) using 12 AWG 3-wire jacketed cable		
HIGH LIMIT THERMOSTAT				
Adjustment range	40°F to 90°F (4°C	to 32°C)		
Dead band	1°F (0.6°C)	1°F (0.6°C)		
Sensor type	Thermistor			
Circuit type	NEC Class 2	NEC Class 2		
Lead length		Up to 500 ft (152 m) using 18 AWG 2-wire jacketed cable Up to 1,000 ft (504 m) using 12 AWG 2-wire jacketed cable		
ENERGY MANAGEMENT COM	PUTER (EMC) INTERFACE			
Inputs	OVERRIDE ON OVERRIDE OFF	(10 mA dry switch contact) (10 mA dry switch contact)		
Outputs	SUPPLY SNOW HEAT HIGH TEMP REMOTE	 (10 mA dry switch contact) 		
ENVIRONMENTAL				
Operating temperature	-40°F to 160°F (-	40°C to 71°C)		
Storage temperature	-50°E to 180°E (-	-50°F to 180°F (-45°C to 82°C)		

APS-3C ORDERING DETAILS

Catalog number		Part number	Description
APS-3C-120V		P000000781	APS-3C Snow Melting and De-Icing Controller, 120 V
APS-3C-208/24	-0V	P000000782	APS-3C Snow Melting and De-Icing Controller, 208/240 V
Snow/Ice Sen	sors		
	CIT-1	512289-000	CIT-1 Snow sensor
	GIT-1	126795-000	GIT-1 Gutter sensor
	SIT-6E	P000000112	SIT-6E Pavement snow sensor
	RCU-3	P000000883	RCU-3 Remote control unit


LIMITED WARRANTY


ETI's two year limited warranty covering defects in workmanship and materials applies.

APS-4C

SNOW MELTING AND GUTTER DE-ICING CONTROLLER WITH GROUND-FAULT PROTECTION

PRODUCT OVERVIEW

The ETI® APS-4C snow melting and gutter de-icing controller with ground-fault protection, when used with one or more compatible sensors, automatically controls surface snow melting and roof and gutter de-icing heating cables for minimum energy costs. Applications include pavement, sidewalk, loading dock, roof, gutter, and down spout snow/ ice melting in commercial and industrial environments.

The adjustable hold-on timer continues heater operation for up to 10 hours after snow stops to ensure complete melting. The optional RCU-4 Remote Control Unit can be located where system operation can be conveniently observed. It duplicates many of the APS-4C front panel functions.

The APS-4C provides advanced patented and patent pending ground-fault equipment protection (GFEP) as required by the national electrical codes. The GFEP automatically tests itself every time the contactors operate and once every 24 hours. The trip current can be set at 60 or 120 mA via a DIP an internal switch or retained at the 30 mA default value. As an aid to troubleshooting heating cable ground faults, the APS-4C provides an output that can indicate the ground current on a service person's portable DVM.

The calibrated 40°F to 90°F (4°C to 32°C) high limit thermostat prevents excessive temperatures when using constant wattage and MI heating cables. It also permits safe testing at outdoor temperatures too high for continuous heater operation. The temperature sensor is included.

The APS-4C provides a complete interface for use in environments supervised by an energy management computer (EMC). This feature can also be used for general purpose remote control and annunciation.

All sensor and communications wiring is NEC Class 2. This simplifies installation while enhancing fire and shock safety. Multiple sensors provide superior performance by better matching the controller to site performance requirements. The APS-4C can interface up to six sensors.

The APS-4C is an exceptionally capable surface snow melting and roof and gutter de-icing controller. For complete information describing its application, installation and features, please contact your nVent representative or visit our web site at nVent.com.

echnical Data Sheets

GENERAL

Area of use Approvals

ENCLOSURE

Nonhazardous locations

CUSED LISTED 109R Type 873 Temperature Regulating Equipment

Protection	NEMA 3R	
Cover attachment	Hinged polycarbonate cover, lockable	
Entries	One 1-1/16" entry (top) for NEC Class 2 connections Two 1-11/16" entries (bottom) for supply and load power, except 277 V single phase Two 1-1/16" entries (bottom) for supply and load power, 277 V single phase only Polycarbonate	
Material		
Mounting	Wall mounted	
CONTROL		
Supply voltage	APS-4C-208/240 V: APS-4C-277 V: APS-4C-277/480 V: APS-4C-600 V:	208–240 V 50/60 Hz 3-phase 277 V 50/60 Hz single phase 277/480 V 50/60 Hz 3-phase 600 V 50/60 Hz 3-phase
Contact type	3 Form A	
Maximum ratings	Voltage: 600 V Current: 50 A except 277 V single phase, 40 A for 277 V single phase	
Heater hold-on timer	0 to 10 hours; actuated by snow stopping or toggle switch	
System test	Switch toggles the heater contact on and off. If temperature exceeds high limit, heater cycles to prevent damage.	
GROUND-FAULT EQUIPMENT PROTECTION (GFEP)		
Set point	30 mA (default); 60 mA and 120 mA selectable by DIP switc	
Automatic self-test	Mode A: Verifies GFEP function before contactors operate Mode B: Verifies GFEP and heaters every 24 hours	
Manual test/reset	Toggle switch provided for this function	
Maintenance facility	DC output proportional to ground current provided for troubleshooting the heater system	
SNOW/ICE SENSORS		
Sensor input	Up to 6 sensors: CIT-1, G	BIT-1, SIT-6E
Circuit type	NEC Class 2	
Lead length	, ,	ng 18 AWG 3-wire jacketed cable Ising 12 AWG 3-wire jacketed cable
HIGH LIMIT THERMOSTAT		
Adjustment range	40°F to 90°F (4°C to 32°C)	
Dead band	1°F (0.6°C)	
Circuit type	Thermistor	
Sensor interface	NEC Class 2	
Lead length	, ,	ng 18 AWG 2-wire jacketed cable sing 12 AWG 2-wire jacketed cable

ENERGY MANAGEMENT COMPUTER (EMC) INTERFACE

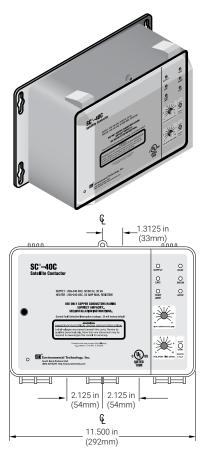
Inputs	OVERRIDE ON OVERRIDE OFF	(10 mA dry switch contact) (10 mA dry switch contact)
Outputs	SUPPLY SNOW HEAT HIGH TEMP REMOTE	 (10 mA dry switch contact)

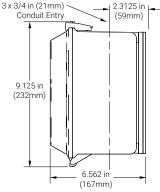
ENVIRONMENTAL

Operating temperature	-40°F to 160°F (-40°C to 71°C)
Storage temperature	-50°F to 180°F (-45°C to 82°C)

ORDERING DETAILS

Catalog number		Part number	Description
APS-4C-208/240V		P000000783	APS-4C Snow melting and de-icing controller with ground- fault protection, 208-240 Vac 50/60 Hz three phase
APS-4C-277V		P000000784	APS-4C Snow melting and de-icing controller with ground-fault protection, 277 Vac 50/60 Hz single phase
APS-4C-277V/480V		P000000785	APS-4C Snow melting and de-icing controller with ground- fault protection, 277/480 Vac 50/60 Hz three phase
APS-4C-600V		P000000786	APS-4C Snow melting and de-icing controller with ground-fault protection, 600 Vac 50/60 Hz three phase
Snow/Ice Sensors			
CIT-1		512289-000	CIT-1 Snow sensor
GIT-1		126795-000	GIT-1 Gutter sensor
SIT-6	E	P000000112	SIT-6E Pavement snow sensor
RCU-4		P000000884	RCU-4 Remote control unit


LIMITED WARRANTY


ETI's two year limited warranty covering defects in workmanship and materials applies.

SC-40C

SNOW AND ICE MELTING SATELLITE CONTACTOR

PRODUCT OVERVIEW

The ETI® SC-40C snow and ice melting satellite contactor answers the need for cost effective modular snow melting heater control. One or more SC-40Cs, when used with an APS-4C control panel acting as the master control, allow for modular snow melting system design. There is no limit to the number of SC-40Cs that can be interfaced in a single system. This approach reduces front end design, hardware, and installation costs while providing a number of useful features that would be otherwise too expensive and complex to implement.

The SC-40C provides Ground-Fault Equipment Protection (GFEP) as required by the national electrical codes. Upon sensing a ground-fault condition, the SC-40C inhibits operation of its contactor until manually reset. Circuits without a ground fault continue to operate normally, thus partitioning defective heating cables.

The adjustable hold-on timer continues heater operation on each SC-40C for up to 10 hours after snow stops to ensure complete melting and to compensate for differences between zones. The optional RCU-4 remote control unit can be located where system operation can be conveniently observed. It duplicates many of the controls and indicators on the SC-40C front panel.

Each SC-40C provides a complete energy management computer (EMC) interface. This feature provides remote access for advanced applications requiring remote or zone control along with remote annunciation.

Each SC-40C maintains communications to and from the APS-4C using a 3-wire cable. Thus, the APS-4C alarms ground faults occurring anywhere in the system. This feature inserts a short time delay between the operation of each contactor, thus improving power quality by limiting the inrush current. The RCU-4 remote control unit supplied permits overriding zone control in applications requiring the capability.

For complete information describing its application, installation and features, please contact your nVent representative or visit our web site at nVent.com.

GENERAL

Area of use Approvals

Nonhazardous locations

CUSED LISTED 109R Type 873 Temperature Regulating Equipment

Protection	NEMA 3R	
Cover attachment	Hinged polycarbonate	cover, lockable
Entries	Two 1-11/16" entries (b except 277 V single ph	for NEC Class 2 connections ottom) for supply and load power, ase ottom) for supply and load power, 277 N
Material	Polycarbonate	
Mounting	Wall mounted	
COMMUNICATIONS BUS		
Number of cascaded units	Unlimited	
Contactor delay	5 seconds	
Bus-wire type	3-wire jacketed cable	
Circuit type	NEC Class 2	
Lead length	,	sing 18 AWG 3-wire jacketed cable using 12 AWG 3-wire jacketed cable
CONTROL		
Supply voltage	SC-40C 208/240 V: SC-40C 277 V: SC-40C 277/480 V: SC-40C 600 V:	208–240 V 50/60 Hz 3-phase 277 V 50/60 Hz single phase 277/480 V 50/60 Hz 3-phase 600 V 50/60 Hz 3-phase
Contact type	3 Form A	
Maximum ratings	Voltage: 600 V Current: 50 A except 2 phase	77 V single phase, 40 A for 277 V single
Heater hold-on timer	0 to 10 hours; actuated	by snow stopping or toggle switch
System test		ater contact on and off. If temperature ater cycles to prevent damage.
GROUND-FAULT EQUIPMENT PROTECTION (GFEP)		
Set point	30 mA (default); 60 mA	A and 120 mA selectable by DIP switch
Automatic self-test		function before contactors operate and heaters every 24 hours
Manual test/reset	Toggle switch provided	d for this function
Maintenance facility	DC output proportiona troubleshooting the he	l to ground current provided for ater system
HIGH LIMIT THERMOSTAT		
Adjustment range	40°F to 90°F (4°C to 32	2°C)
Dead band	1°F (0.6°C)	
Sensor type	Thermistor	
Circuit type	NEC Class 2	
Lead lengtht		sing 18 AWG 2-wire jacketed cable using 12 AWG 2-wire jacketed cable

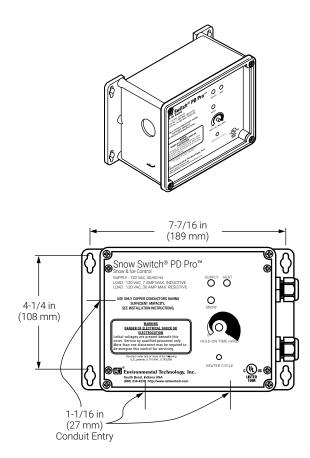
ENERGY MANAGEMENT COMPUTER (EMC) INTERFACE

Inputs	OVERRIDE ON OVERRIDE OFF	(10 mA dry switch contact) (10 mA dry switch contact)	
Outputs	SUPPLY SNOW HEAT HIGH TEMP REMOTE	 (10 mA dry switch contact) 	
ENVIRONMENTAL			
Operating temperature	−40°F to 160°F (-	-40°C to 71°C)	

Operating temperature	-40° F to 160° F (-40° C to $/1^{\circ}$ C)
Storage temperature	-50°F to 180°F (-45°C to 82°C)

ORDERING DETAILS

Catalog nun	nber	Part number	Description
SC-40C 208	8/240V	P000000787	SC-40C Satellite Contactor, 208-240 Vac 50/60 Hz three phase
SC-40C 277	7V	P000000788	SC-40C Satellite Contactor, 277 Vac 50/60 Hz single phase
SC-40C 277	7/480V	P000000789	SC-40C Satellite Contactor, 277/480 Vac 50/60 Hz three phase
SC-40C 600	OV	P000000790	SC-40C Satellite Contactor, 600 Vac 50/60 Hz three phase
Snow/ice	sensors (not included)		
	CIT-1	512289-000	CIT-1 Snow sensor
	GIT-1	126795-000	GIT-1 Gutter sensor
	SIT-6E	P000000112	SIT-6E Pavement snow sensor
	RCU-4	P000000884	RCU-4 Remote control unit


LIMITED WARRANTY

ETI's two year limited warranty covering defects in workmanship and materials applies.

PD PRO

AUTOMATIC SNOW AND ICE MELTING CONTROLLER

PRODUCT OVERVIEW

The ETI[®] PD Pro is an automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments.

The PD Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The controller features automatic and manual-override operator controls. The adjustable Hold-On timer continues heater operation up to 8 hours after the sensors stop detecting snow or ice to ensure the rest of the slab has completely dried. The Heater Cycle control button allows manual initiation or cancellation of a heating cycle. The optional RCU–3 remote control unit can be located for convenient monitoring and control. These flexible control options provide complete snow melting and water evaporation at a low operating cost.

The PD Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds. The PD Pro is a snow and ice controller for medium-sized applications whose features and power requirements do not require an APS or EUR Series control panel. For complete information describing application, installation, and features, please contact your nVent representative or visit nVent.com.

GENERAL

Area of use

Approvals

Nonhazardous locations

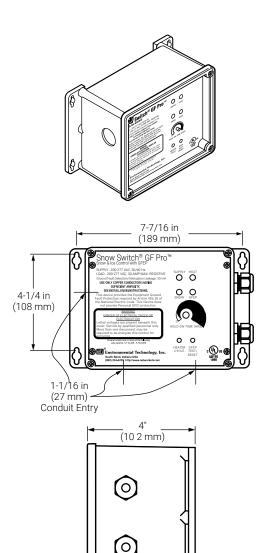
USED 109R Also evaluated by Underwriters Laboratories Inc in accordance with UL 1053 Ground-Fault Sensing and Relaying Equipment

echnical Data

PD PRO ENCLOSURE

Protection	Туре 4Х	
Dimensions	5 1/2" (L) x 8 1/8" (W) x 4 3/8" (H) 140 mm (L) x 207 mm (W) x 112 mm (H)	
Material	Polycarbonate	
Cover attachment	Polycarbonate cover, machine screws	
Weight	3 pounds (not including sensors)	
Mounting	Wall mount	
Entries	2 x 3/4" entries (right) for NEC Class 2 connections 3 x 1-1/16" entries (bottom and left) for supply and load power	
CONTROL		
Supply voltage	100-277 Vac; 50/60 Hz	
Load	30 A maximum resistive 7 A maximum inductive	
Heater Hold-On timer	0 – 8 hrs; actuated by snow stopping or toggle switch	
System test	Switch toggles heater contact on and off. If temperature exceeds optional high limit thermistor (45°F), heater shuts off to reduce costs and prevent damage	
FRONT PANEL INTERFACE		
Status indicators	SUPPLY (green):Power onHEAT (yellow):Heating cycle in progressSNOW (yellow):Sensor(s) detect snow	
ENVIRONMENTAL		
Operating temperature	−31°F to 130°F (−35°C to 55°C)	
Storage temperature	-67°F to 167°F (-55°C to 75°C)	

ORDERING INFORMATION


Catalog number	Part number	Description
PD Pro*	P000001508	Automatic Snow and Ice Melting Controller
CIT-1*	512289-000	Aerial Snow Sensor
GIT-1*	126795-000	Gutter Ice Sensor
SIT-6E*	P000000112	Pavement Mounted Snow and Ice Sensor

* The PD Pro does not come with any sensors. Sensors must be ordered separately.

GF PRO

AUTOMATIC SNOW AND ICE MELTING CONTROLLER

PRODUCT OVERVIEW

The ETI® GF Pro is an automatic snow and ice melting controller for pavement, sidewalks, loading docks, roofs, gutters and downspouts in commercial and residential environments.

The GF Pro interfaces with up to two sensors, (any combination of CIT-1, GIT-1 or SIT-6E) to meet site requirements. The controller features automatic and manual-override operator controls. The adjustable Hold-On timer continues heater operation up to 8 hours after the sensors stop detecting snow or ice to ensure the rest of the slab has completely dried. The Heater Cycle control button allows manual initiation or cancellation of a heating cycle. The optional RCU-4 remote control unit can be located for convenient monitoring and control. These flexible control options provide complete snow melting and water evaporation at a low operating cost.

The GF Pro also features a built-in 30 mA, self-testing Ground-Fault Equipment Protection (GFEP) capability, digitally filtered to minimize false tripping. A ground-fault alarm must be manually reset using the Test/Reset switch before heater operation can continue.

The GF Pro is housed in an environmentally-sheltered Type 4X enclosure and weighs only 3 pounds. The GF Pro is a snow and ice controller for medium-sized applications whose features and power requirements do not require an APS or EUR Series control panel. For complete information describing application, installation, and features, please contact your nVent representative or visit nVent.com.

GENERAL

Area of use Approvals Nonhazardous locations

US Type 873 Temperature Regulating Equipment

Also evaluated by Underwriters Laboratories Inc in accordance with UL 1053 Ground-Fault Sensing and Relaying Equipment

echnical Data

GF PRO

ENCLOSURE

Protection	Туре 4Х
Dimensions	5 1/2" (L) x 8 1/8" (W) x 4 3/8" (H) 140 mm (L) x 207 mm (W) x 112 mm (H)
Material	Polycarbonate
Cover attachment	Polycarbonate cover, machine screws
Weight	3 pounds (not including sensors)
Mounting	Wall mount
Entries	2 x 3/4" entries (right) for NEC Class 2 connections 3 x 1-1/16" entries (bottom and left) for supply and load power
CONTROL	
Supply voltage	100-277 Vac; 50/60 Hz
Load	30 A maximum resistive
Heater Hold-On timer	0 – 8 hrs; actuated by snow stopping or toggle switch
System test	Switch toggles heater contact on and off. If temperature exceeds optional high limit thermistor (45°F), heater shuts off to reduce costs and prevent damage
FRONT PANEL INTERFACE	
Status indicators	SUPPLY (green): Power on HEAT (yellow): Heating cycle in progress SNOW (yellow): Sensor(s) detect snow GFEP (red): Ground-Fault condition GFEP (red, flashing): Failed GFEP (red, rapid flashing): GFEP test in progress
GROUND-FAULT EQUIPMEN	T PROTECTION (GFEP)
Set point	30 mA
Automatic self-test	GFEP verified before contactors operate; GFEP runs on start-up and every 24 hours
Manual Test/Reset	Test/Reset switch on front panel
ENVIRONMENTAL	
Operating temperature	−31°F to 130°F (−35°C to 55°C)
Storage temperature	-67°F to 167°F (-55°C to 75°C)
ORDERING INFORMATION	

ORDERING INFORMATION

Catalog number	Part number	Description
GF Pro*	P000001509	Automatic Snow and Ice Melting Controller
CIT-1*	512289-000	Aerial Snow Sensor
GIT-1*	126795-000	Gutter Ice Sensor
SIT-6E*	P000000112	Pavement Mounted Snow and Ice Sensor
* The GF Pro does not con	ne with any sensors. Sensors must be or	rdered separately.

CIT-1, GIT-1, SIT-6E

SNOW AND ICE MELTING SENSORS CIT-1 SNOW SENSOR, GIT-1 GUTTER SENSOR, SIT-6E PAVEMENT SENSOR

SIT-6E

PRODUCT OVERVIEW

The ETI® CIT-1, GIT-1 and SIT-6E snow and ice melting sensors combine to reliably detect moisture and temperature for surface snow melting and roof and gutter de-icing applications. The CIT-1 sensor may be paired with either the GIT-1 sensor for gutter applications or the SIT-6E sensor for pavement applications. These sensors detect precipitation as snow at temperatures below 38°F (3.3°C). Control panels are signaled only if moisture occurs below this temperature, thus saving energy and ensuring reliable ice melting. They provide the industry's most versatile and cost effective automatic snow melting control when used with any APS or EUR series control panel.

Reliability and sensitivity are key features in the CIT–1, GIT–1 and SIT–6E sensors. The solid state design, combined with a rugged housing and epoxy potting, ensure many years of trouble free service. Precision precipitation and temperature sensing provide the sensitivity required for effective automatic control. All three are NEC Class 2 low voltage device which simplifies installation.

The CIT-1, GIT-1 and SIT-6E's unique microcontroller design frees their moisture sensors from ice bridging. Ice bridging happens if incomplete melting occurs near the heater or sensor leaving an air space. The air insulates thus preventing effective heater and sensor operation. Additional features prevent heater operation under conditions favorable to heater ice tunneling.

The CIT-1 aerial snow sensor detects falling or blowing precipitation before snow or ice begin to accumulate. This allows the control panel to begin managing the system. This sensor may be roof or mast mounted.

The GIT-1 mounts directly in gutters and down spouts sensing actual environmental conditions.

The SIT-6E accurately measures pavement temperature while reliably detecting snow and ice conditions on pavement surfaces. A built-in hold-on timer in the SIT-6E keeps heaters operating for an hour after snow stops to help ensure complete snow melting. Mounting these sensors close to the deicing heaters ensures that pavement and sensor become dry at about the same time.

An adjustable mounting system aligns the SIT–6E with the pavement surface. Six conduit locations add to installation flexibility. The sensor subassembly is field replaceable without disturbing the pavement.

CIT-1, GIT-1, SIT-6E

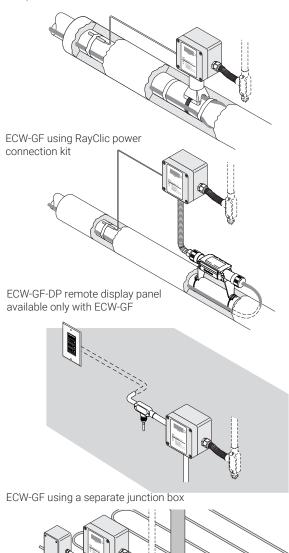
Sensors are easy to install and may be mounted up to 2000 ft (609 m) from a control panel. A combination of up to six sensors may be used with a control panel to best match site performance requirements.

For complete information describing applications, installation and features, please contact your nVent representative or visit our web site at nVent.com.

GENERAL		
Area of use		
CIT-1	Gutters or pavement (in co	pnjunction with GIT–1 or SIT–6E)
GIT-1	Gutters	
SIT-6E	Pavement	
Heater hold-on time		
CIT-1	None	
GIT-1	None	
SIT-6E	1 hour	
Activation temperature	38°F (3.37°C)	
CONNECTIONS		
Circuit type	NEC Class 2	
Supply voltage	24 Vac (supplied by panel)	
Output signal	Voltage drop	
Bus wire type	3-wire jacketed cable	
Lead length	Up to 2,000 ft (609 m) usir	ng 12 AWG 3-wire jacketed cable
	Up to 500 ft (152 m) using	18 AWG 3-wire jacketed cable
ENVIRONMENTAL		
Operating temperature	-40°F to 160°F (-40°C to	71°C)
Storage temperature	-50°F to 180°F (-45°C to	82°C)
ORDERING DETAILS		
Catalog number	Part number	Description
CIT-1	512289-000	CIT-1 Snow sensor

Catalog number	Part number	Description
CIT-1	512289-000	CIT-1 Snow sensor
GIT-1	126795-000	GIT-1 Gutter sensor
SIT-6E	P000000112	SIT-6E Pavement snow sensor

LIMITED WARRANTY


ETI's two-year limited warranty covering defects in workmanship and materials applies.

ECW-GF, ECW-GF-DP

DIGITAL ELECTRONIC CONTROLLERS AND REMOTE DISPLAY PANEL

ECW-GF with FTC-PSK pipe stand and power connection kit

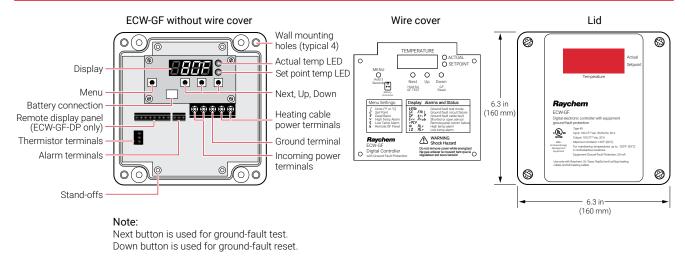
PRODUCT OVERVIEW

The nVent RAYCHEM ECW-GF electronic controller provides accurate temperature control with integrated 30-mA ground-fault protection. The ECW-GF is ideal for pipe freeze protection, flow maintenance, freezer frost heave, floor heating and snow melting applications.

The ECW-GF is housed in a NEMA 4X enclosure designed to be wall mounted or installed on a pipe with the optional Raychem FTC-PSK pipe stand kit.

The controller includes a window and a digital display that shows the measured temperature, set point temperature and alarm conditions (temperature sensor failure, high or low temperature and ground-fault) if detected.

Alarm conditions can be indicated via a Form C dry contact connected to a building management system. Status LEDs indicate whether the digital display is showing the set point or actual temperature or if the controller is in an alarm state.

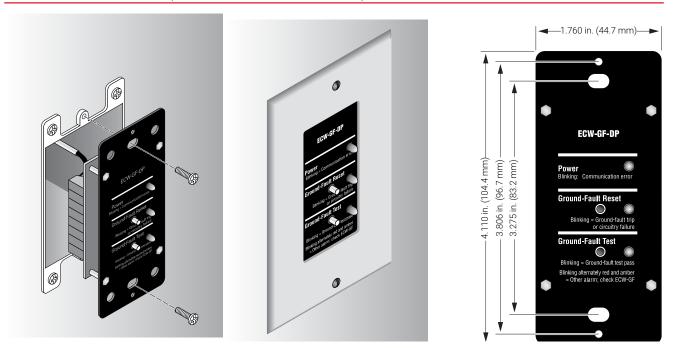

The ECW-GF can be programmed to maintain temperatures up to 200° F (93°C), at voltages from 100 to 277 V, and is capable of switching current up to 30 amperes.

Programming the set point temperature, deadband, and the high and low alarm thresholds on the controllers is accomplished using the built-in digital display and push buttons. A 9-V battery connector is supplied to allow programming the controller before the heating cable circuit power is provided.

An optional remote display panel, the RAYCHEM ECW-GF-DP, is available. This remote display provides remote alarm indication and ground-fault test and reset capability. The ECW-GF-DP can be installed indoors in a standard duplex box located up to 328 ft (100 m) from the controller.

The ECW-GF is supplied with a 25-foot thermistor for line, slab or ambient sensing temperature control.

ECW-GF CONTROLLER



GENERAL

VENERAE		
Approvals	Nonhazardous locations	
Supply voltage	100–277 Vac ±10% 50–60 Hz Common supply for controller and heat tracing circuit	
ENCLOSURE		
Protection	NEMA 4X	
Material	Fiberglass reinforced polyester plastic	
Entries	1 x 3/4 in (19 mm) conduit entries for power 1 x 1 in (25 mm) conduit entry for heating cable 1 x 1/2 in (13 mm) conduit entry for RTD sensor	
Relative humidity	0% to 90%, noncondensing	
Ambient installation and usage temperature	-40°F to 140°F (-40°C to 60°C)	
CONTROL		
Relay type	Double-pole, mechanical	
Control range	32°F to 200°F (0°C to 93°C)	
Deadband	Adjustable 2°F to 10°F (2°C to 6°C)	
Accuracy	±3°F (1.7°C) of set point	
INPUT POWER		
Voltage	277 Vac nominal, 50/60 Hz maximum	
Current	30 A maximum	
MONITORING AND ALARM OUTPUT		
Temperature	Low alarm range: 20°F (–6°C) to set point minus deadband, or OFF High alarm range: Set point plus (Deadband +5°F (3°C)) to 230°F, or OFF	
RTD failure	Shorted or open temperature sensor	

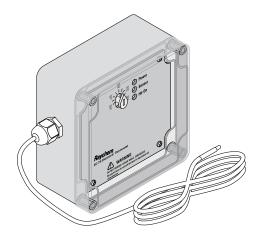
TEMPERATURE SENSOR (INCLU	DED)
Input type	Thermistor 10K ohm @25C Type J
GROUND-FAULT	
Ground-fault protection	30 mA fixed
Ground fault trip reset	Reset button, manual
Ground-fault test	Manual ground-fault circuitry test; automatic hourly circuitry test
PROGRAMMING AND SETTING	
Method	Programmable at controller – Push buttons on front panel
Units	°F or °C
Digital display	Four numeric display digits for parameter and error/alarm indication
LEDs	Indicate actual and set point from display and alarm state
Memory	Nonvolatile, restored after power loss
Stored parameters	Parameters can be programmed without power supply (external battery) and parameters are stored in nonvolatile memory.
Alarm conditions	Low/high temperature and thermistor failure (open or shorted) Ground-fault trip, ground-fault circuit failure and loss of power.
CONNECTION TERMINALS	
Power supply input	Screw rising cage clamp, 18–6 AWG
Heating cable output	Screw rising cage clamp, 18–6 AWG
Ground	Screw rising cage clamp, 18–6 AWG
Thermistor	Screw rising cage clamp, 22–14 AWG
Alarm	Screw rising cage clamp, 22–14 AWG
Remote display panel	Screw rising cage clamp, 22–14 AWG

ECW-GF-DP REMOTE PANEL (FOR ECW-GF CONTROLLER ONLY)

nVent.com/RAYCHEM | 455

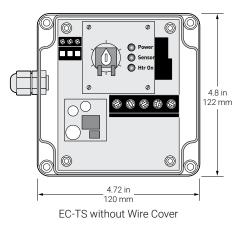
GENERAL

Approvals	Nonhazardous locations c R us LISTED
Environment	Indoors, dry area
Ambient operating temperature	32°F to 122°F (0°C to 50°C)
Humidity	90% noncondensing
FEATURES	
LED	3 LEDs 1 green, 1 red, 1 amber
Buttons	2: Ground-fault reset, Ground-fault test
Power	Power provided from ECW-GF controller 12 Vdc @ 100 mA
Connection	8 position terminal block 8 conductor 22 AWG shielded cable Alpha - Cat No. 1298C or equivalent 328 ft (100 m) maximum


ORDERING DETAILS

Description	Catalog number	Part number	Weight/lbs
Wall mounted digital electronic controller with ground fault	ECW-GF	P000000925	4.0
Remote display panel for ECW-GF	ECW-GF-DP	P000000926	0.3
Pipe mounting kit with power connection and end seal	FTC-PSK	P000000927	0.2

EC-TS



AMBIENT, PIPE OR SLAB SENSING ELECTRONIC THERMOSTAT WITH 25 FOOT TEMPERATURE SENSING LEAD

Wire Cover

PRODUCT OVERVIEW

The nVent RAYCHEM EC-TS electronic thermostat is an ambient, pipe or slab sensing thermostat that is ideal for pipe freeze protection, flow maintenance, freezer frost heave, floor heating and snow melting applications. The EC-TS can be used to control a single heat-tracing-circuit or as a pilot control of a contactor switching multiple heat-tracing circuits. The temperature set point can be visually checked through the clear lid, as can the LED indicators for alarm, power and heating cable status. The stainless steel temperature sensor makes it an ideal thermostat for applications that require an embedded sensor.

GENERAL

Area of use Approvals Ordinary area, outdoor

CULUS LISTED 80BJ Energy Management Equipment

Supply voltage

100–277 Vac ±10% 50–60 Hz. Auto ranging Common supply for controller and heat-tracing circuit

ENCLOSURE

Protection	NEMA 4X
Cover attachment	Captive stainless steel screws
Entries	2 x 1/2 in conduit entries for power 1 gland entry for the sensor
Material	Polycarbonate
Mounting	Wall mounted
Relative humidity	0% to 90%, noncondensing
Ambient installation and usage temperature	-40°F to 140°F (-40°C to 60°C)

EC-TS CONTROL

Max. switching current Switch type Deadband Set point accuracy Adjustable temperature range

MONITORING

Sensor failure Units LEDs 30 A, 277 Vac SPST (normally open) -0°F, +3°F (-0°C, +1.7°C) ±3°F (1.7°C) 30°F to 110°F (-1°C to 43°C)

Shorted or open sensor

°F and °C

Green LED for power available Green LED for heating cable on Red LED for sensor failure

TEMPERATURE SENSOR

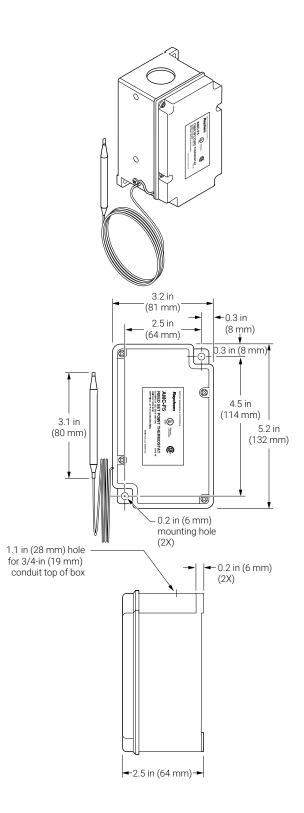
Туре	Thermistor – 0.2°C, 10K ohm, Curve "A"
Construction	3 wire (twisted shielded pair plus ground)
Exposure temperature	Minimum: –40°F (–40°C) Maximum: 212°F (100°C)
Sensor sheath	304 stainless steel
Sensor diameter	0.25 in (0.63 cm)
Sensor length	2 in (5.1 cm)
Leads	20 AWG stranded, PVC overall jacket
Lead length	25 ft (7.6 m)

The sensor cable may be extended to a maximum of 100 ft (30 m) using a 3 wire (twisted shielded pair plus ground) with a wire gauge size of 20 AWG or larger.

CONNECTION TERMINALS

Power supply input	Screw Rising Cage Clamp, 18 – 6 AWG
Heating cable output	Screw Rising Cage Clamp, 18 – 6 AWG
Ground	Screw Rising Cage Clamp, 18 – 6 AWG
Thermistor (sensor)	Screw Rising Cage Clamp, 22 – 14 AWG

ORDERING DETAILS


Description	Catalog number	Part number	Weight/lbs
Electronic thermostat with 25 ft sensing lead	EC-TS	P000001115	1.2
Spare Parts and Accessories			
MI cable grounding kit (required if installing MI heating cable)	MI-GROUND-KIT	P000000279	0.2
Pipe support bracket	SB-110	707366	1.0

AMC-F5

FIXED SET POINT FREEZE PROTECTION THERMOSTAT FOR NONHAZARDOUS LOCATIONS

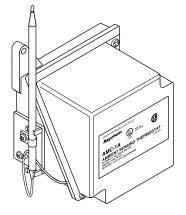
PRODUCT OVERVIEW

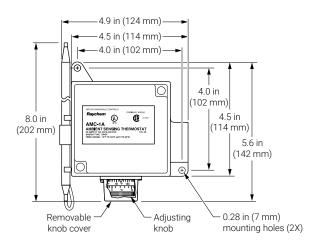
The nVent RAYCHEM AMC-F5 thermostat is designed to control heat-tracing systems used for freeze protection in nonhazardous locations. The thermostat has a fixed set point of 40°F (5°C) and can be used for ambient-sensing or line-sensing. It can be used to control a single heat-tracing circuit or as a pilot control of a contactor switching multiple heat-tracing circuits.

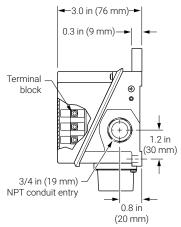
SPECIFICATIONS

Enclosure	TYPE 4X, UV-resistant thermoplastics	
Entries	One 3/4-in (19 mm) through hole	
Set point	40°F (5°C) nonadjustable	
Sensor exposure limits	-30°F to 140°F (-34°C to 60°C)	
Housing exposure limits	-30°F to 140°F (-34°C to 60°C)	
Switch	SPST	
Electrical rating	22 A at 125 / 250 / 480 Vac	
Accuracy	±3°F (±1.7°C)	
Deadband	2°F to 12°F (1.1°C to 6.7°C) above actuation temperature	
Set point repeatability	±3°F (±1.7°C)	
Sensor type	Fluid-filled (silicone) bulb and 2.5 ft (0.8 m) capillary	
Sensor material	Tin-plated copper	
Connection	Two 14 AWG (2 mm²) pigtails One ground screw	

APPROVALS




Technical Data


AMC-1A

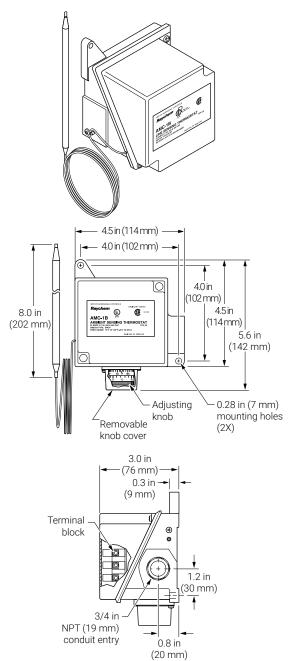
AMBIENT-SENSING THERMOSTAT FOR NONHAZARDOUS LOCATIONS

PRODUCT OVERVIEW

The nVent RAYCHEM AMC-1A ambient-sensing thermostat is designed to control heat-tracing systems used for freeze protection in nonhazardous locations. The thermostat responds to ambient temperature changes and has an adjustable set point. The AMC-1A can be used to control a single heat-tracing circuit or as a pilot control of a contactor switching multiple heat-tracing circuits.

SPECIFICATIONS

Enclosure	TYPE 4X, polyurethane-coated cast-aluminum housing, stainless-steel hardware
Entries	One 3/4-in (19 mm) NPT conduit hub
Set point range	15°F to 140°F (-9°C to 60°C)
Sensor exposure limits	-40°F to 160°F (-40°C to 71°C)
Housing exposure limits	-40°F to 160°F (-40°C to 71°C)
Switch	SPDT
Electrical rating	22 A at 125 / 250 / 480 Vac
Accuracy	±6°F (±3.3°C)
Deadband	2°F to 12°F (1.1°C to 6.7°C) above actuation temperature
Set point repeatability	±3°F (±1.7°C)
Sensor type	Fixed fluid-filled (silicone) bulb and capillary
Sensor material	300 series stainless steel
Connection terminals	Screw terminals, 10–14 AWG (2–5 mm²)


APPROVALS

AMC-1B

LINE-SENSING THERMOSTAT FOR NONHAZARDOUS LOCATIONS

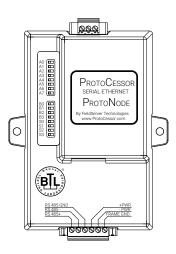
PRODUCT OVERVIEW

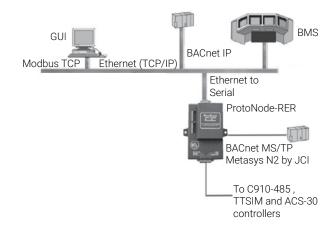
The nVent RAYCHEM AMC-1B line-sensing thermostat is designed to control heat-tracing systems in nonhazardous locations. The AMC-1B senses pipe or tank wall temperatures and can be used to control a single heat-tracing circuit or as a pilot control of a contactor switching multiple heat-tracing circuits. It can also be used to indicate low-temperature or high-temperature alarm conditions.

SPECIFICATIONS

Enclosure	TYPE 4X, polyurethane-coated cast-aluminum housing, stainless steel hardware
Entries	One 3/4-in NPT conduit hub
Set point range	25°F to 325°F (-4°C to 163°C)
Sensor exposure limits	-40°F to 420°F (-40°C to 215°C)
Housing exposure limits	-40°F to 160°F (-40°C to 71°C)
Switch	SPDT
Electrical rating	22 A at 125 / 250 / 480 Vac
Accuracy	±6°F (±3.3°C)
Deadband	2°F to 12°F (1.1°C to 6.7°C) above actuation temperature
Set point repeatability	±3°F (±1.7°C)
Sensor type	Fluid-filled (silicone) bulb and 9 ft (2.7 m) capillary
Sensor material	300 series stainless steel
Connection terminals	Screw terminals, 10–14 AWG (2–5 mm²)

APPROVALS




Technical Data Sheets

PROTONODE

MULTI-PROTOCOL DEVICE GATEWAY PROTONODE-RER AND PROTONODE-RER-10K

PRODUCT OVERVIEW

The nVent RAYCHEM ProtoNode is an external, high performance multi-protocol gateway for customers needing protocol translation between Building Management Systems (BMS) using BACnet® or Metasys® N2 and the RAYCHEM C910-485, ACS-30 or TTSIM controllers.

The RAYCHEM ProtoNode-RER and ProtoNode-RER-10K come pre-programmed with the C910-485, ACS-30 and TTSIM Modbus® profiles for simple integration into a BMS. One ProtoNode can connect to: one ACS-30 system or up to six C910-485 controllers or up to one hundred TTSIM modules.

ProtoNode-RER: Provides support for Modbus RTU to BACnet MS/TP, BACnet IP (BTL Certified), and Metasys N2 protocol translation for C910-485, TTSIM and smaller scale ACS-30 systems (up to 5 PCM panels). The gateway features an ARM9 processor for fast performance and includes two RS-485 and one Ethernet ports.

ProtoNode-RER-10K: Provides support for Modbus RTU to BACnet MS/TP, BACnet IP (BTL Certified), and Metasys N2 protocol translation for larger ACS-30 systems (up to 34 PCM panels). The gateway features an ARM9 processor for fast performance and includes two RS-485 and one Ethernet ports.

Features and benefits:

- The most flexible and versatile multiprotocol device server on the market
- BACnet International's BTL Certification makes the ProtoNode-RER the most reliable gateway on the market
- Multi-client and multi-server support ensures interoperability between any Industrial and or Building Automation protocols
- Flash upgradable

For additional information, contact your nVent representative or call (800) 545-6258.

APPROVALS

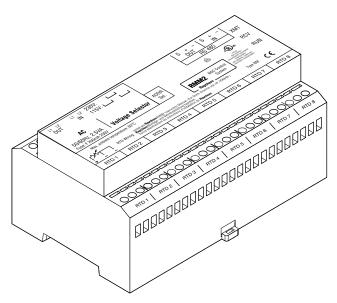
B

BACnet Testing Labs (BTL) B-ASC on ProtoNode-RER

	ProtoNode-RER & ProtoNode-RER-10K
Electrical connections	 One 6-pin Phoenix connector, one RS-485 +/- ground port, power +/- frame ground port
	One 3-pin RS-485 Phoenix connector, one RS-485 +/- ground port
	One Ethernet-10/100 Ethernet port
Power requirements	9–30 Vdc or Vac, or 5 Vdc
Current draw	150 mA @ 12 V
Supported field protocols	BACnet IP (Ethernet)
	BACnet MS/TP (RS-485)
	Metasys N2 open (RS-485)
Operating temperature	-40°F to 187°F (-40°C to 85°C)
Relative humidity	5–90% RH, noncondensing
Enclosure dimensions	4.37 in L x 2.75 in W x 1.50 in H (11.10 cm L x 7.00 cm W x 3.81 cm H)

NUMBER OF PROTONODE / CONTROLLER CONNECTIONS

Description	ProtoNode-RER	ProtoNode-RER-10K
C910-485	6	N/A
TTSIM modules	100	N/A
ACS-PCM2-5 Panels	5	34


ORDERING DETAILS

Description	Catalog number	Part number	Weight (lbs)
RAYCHEM ProtoNode-RER: BACnet MSTP/IP and Metasys N2 protocol gateway	ProtoNode-RER	P000002008	1.3
RAYCHEM ProtoNode-RER-10K : BACnet MSTP/IP and Metasys N2 protocol gateway	ProtoNode-RER-10K	P000001983	1.3

RMM2

HEAT-TRACING REMOTE MONITORING MODULE

RMM2 without enclosure

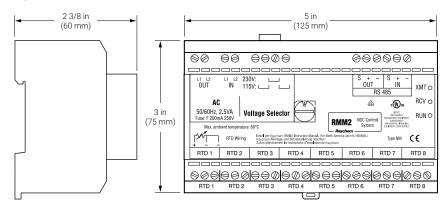
PRODUCT OVERVIEW

The nVent RAYCHEM remote monitoring module (RMM2) provides temperature monitoring capability for the NGC heat-tracing control and monitoring systems. The RMM2 accepts up to eight RTDs that measure pipe, vessel, or ambient temperatures in a heat-tracing system. Multiple RMM2s communicate with a single NGC controller to provide centralized monitoring of temperatures. A single, twisted pair RS-485 cable connects up to 16 RMM2s for a total monitoring capacity of 128 temperatures.

Control and monitoring

The RMM2 modules are used to aggregate RTD wires in one remote location and send the information back to the control system through a single twisted pair cable. This helps reduce installation costs since only one conduit run returns to the controller, rather than eight. The RMM2s are placed near desired measurement locations in nonhazardous or hazardous locations. Multiple temperature sensor inputs are networked over a single cable, significantly reducing installation cost.

Alarms


Each temperature sensor connected to a RMM2 may have individual low- and high-temperature alarms. Alarm limits are set and alarm conditions are reported at the control panel. Additional alarms are triggered for failed temperature sensors and communication errors. Alarms may be reported remotely through an alarm relay in the control system or through an RS-485 connection to a host computer supporting the Modbus® protocol.

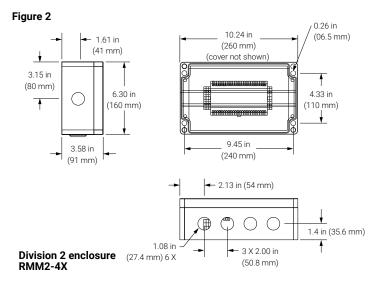
Configurations

The RMM2 clips to a DIN 35 rail and can be mounted in a choice of enclosures, as required for the area classification and environment. For aggressive environments and Division 2 hazardous locations, nVent offers a glass-reinforced polyester TYPE 4X enclosure.

DIMENSIONS

Figure 1

GENERAL


	RMM2
Area of use (with appropriate enclosure)	Nonhazardous or hazardous locations
Approvals	Nonhazardous locations
	CUUPMENT SUBASSEMBLY Type NM AND GENERAL SIGNALING EQUIPMENT SUBASSEMBLY
Ambient operating temperature range	-40°F to 140°F (-40°C to 60°C)
Ambient storage temperature range	-40°F to 140°F (-40°C to 60°C)
Relative humidity	5% to 95%, noncondensing
Supply voltage (nominal)	115/230 Vac, ±10%, jumper selectable. (The default voltage is 230 Vac. A jumper is supplied to convert to 115 Vac.)
Internal power consumption	< 3 W

RMM2 WITH DIVISION 2 ENCLOSURE

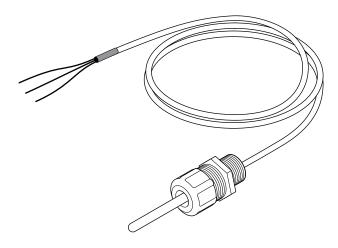
	RMM2-4X	
Protection	TYPE 4X	
Approvals	Hazardous locations USED 9263 TEMPERATURE INDICATING EQUIPMENT FOR USE IN HAZARDOUS LOCATIONS Class I, Division 2, Groups A, B, C, D Class I, Division 2, Groups A, B, C, D HAZARDOUS	
Material	Glass-reinforced polyester, silicone gasket, stainless steel hardware	
Entries	Six 3/4-in (19 mm) NPT conduit entrance holes, four plugged	
Mounting	Surface mounting dimensions are shown in Figure 2	
TEMPERATURE SENSOR INPUTS		
Туре	100 Ω platinum RTD, 3-wire, α =0.00385 Ω/Ω/°C	
Quantity per RMM2	Up to 8 RTDs can be extended with a 3-conductor shielded cable of 20 Ω maximum per conductor	
COMMUNICATION TO NGC CONTROLLER		

Туре	RS-485
Cable	One shielded twisted pair
Length	4000 ft (1200 m) maximum
Quantity	Up to 16 RMM2s may be connected to one NGC-30
Address	Switch-selectable on RMM2, 16 addresses, 0–9, A-F

RMM2 ENCLOSURE DIMENSIONS

CONNECTION TERMINALS

Power supply	24-12 AWG
RTD, communications	24-12 AWG


ORDERING DETAILS

	Catalog number	Part number	Weight
Remote monitoring module (RMM2)			
RMM2, eight RTD inputs, no enclosure	RMM2	051778-000	1.5 lb (0.7 kg)
RMM2 with TYPE 4X enclosure	RMM2-4X	523420-000	4 lb (1.8 kg)
Cables			
RTD extension cable, 1000-ft reel	MONI-RTD-WIRE	962661-000	20 lb (9.1 kg)
RS-485 cable, 1000-ft reel	MONI-RS485-WIRE	549097-000	17 lb (7.7 kg)

RTD-200

RTD TEMPERATURE SENSOR FOR AMBIENT SENSING

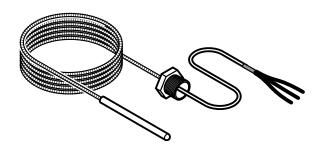
PRODUCT OVERVIEW

The nVent RAYCHEM RTD-200 is a three-wire platinum RTD (resistance temperature detector) typically used with electronic control systems that require accurate ambient temperature sensing. The RTD-200 comes with a 1/2" NPT fitting that installs to the appropriate conduit box. This allows mounting of the RTD in a typical ambient location. This also allows for splicing of RTD extension wire back to the controller.

SPECIFICATIONS

Sensor	
Housing	316 stainless steel
Dimensions	3-in (7.6 mm) length, 1/4-in (6 mm) diameter
Accuracy	± 0.3°F (± 0.2°C)
Range	–100°F to 300°F (–73°C to 149°C)
Resistance	100 ohms ± 0.25 ohm at 0°C α=0.00385 ohms/ohm/°C
Extension wire	
Wire size (each of three)	22 AWG
	Note: The length of RTD extension wires is determined by the wire gauge used. To reduce the likelihood that electrical noise will affect temperature measurement, keep RTD extension wires as short as possible. Use shielded instrument cable such as RAYCHEM MONI-RTD-WIRE (22 AWG, PVC insulation, -30° F to 140° F, -20° C to 60° C) or Belden 83553 (22 AWG, FEP insulation, -95° F to 395° F, -70° C to 200° C).
Wire dielectric strength	600 V
Length	6 ft (1.8 m)
Outer jacket	Fluoropolymer
Maximum exposure temperature	300°F (149°C)
Sensor fitting	1/2-in (12.7 mm) NPT with sealing washer and nut

APPROVALS


Approvals associated with control device. Not to be used in Division 1 areas.

nVent.com/RAYCHEM | 467

RTD3CS AND RTD10CS

RTD TEMPERATURE SENSORS FOR TEMPERATURE MEASUREMENT UP TO 400°F (204°C)

PRODUCT OVERVIEW

The nVent RAYCHEM RTD3CS and RTD10CS are three-wire platinum RTD (resistance temperature detectors) typically used with monitoring and control systems such as the RAYCHEM 910 controller when accurate temperature control is required.

The RTD3CS and RTD10CS can be installed directly to the controller using the supplied 1/2" conduit fitting or to an RTD junction box where RTD extension wire is used.

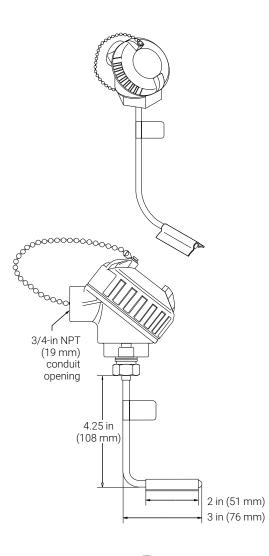
SPECIFICATIONS

SENSOR

Housing	316 stainless steel
Dimensions	3-in (76 mm) length 3/16-in (8 mm) diameter
Sensing area	1-1/2 in (38 mm)
Accuracy	±1°F (0.5°C) at 32°F (0°C)
Range	-76°F to 400°F (-60°C to 204°C)
Resistance	100 ohms at 0°C α =0.00385 ohms/ohm/°C
EXTENSION WIRES	
Wire size (each of three)	20 AWG, stranded tinned copper Note: The length of RTD extension wires is determined by the wire gauge used. To reduce the likelihood that electrical noise will affect temperature measurement, keep RTD extension wires as short as possible. Use shielded instrument cable such as RAYCHEM MONI-RTD-WIRE (22 AWG, PVC insulation, -30°F to 140°F, -20°C to 60°C) or Belden 83553 (22 AWG, FEP insulation, -95°F to 395°F, -70°C to 200°C).
Wire insulation rating	300 V
Length	RTD3CS: 3-ft (0.3 m) flexible armor, 18-in (457 mm) lead wire RTD10CS: 10-ft (3 m) flexible armor, 18-in (457 mm) lead wire
Outer shield	Stainless steel flexible armor (not suitable for underground applications)
Maximum exposure temperature	400°F (204°C)
Conduit bushing	1/2-in (12.7 mm) NPT

ADDITIONAL MATERIALS REQUIRED

AT-180 aluminum tape


APPROVALS

Approvals associated with control device. Not to be used in Division 1 areas.

RTD4AL

RTD TEMPERATURE SENSOR FOR TEMPERATURE MEASUREMENT UP TO 900°F (482°C)

PRODUCT OVERVIEW

The nVent RAYCHEM RTD4AL is a three-wire platinum RTD (resistance-temperature detector) typically used with monitoring and control systems that require accurate temperature control. The RTD4AL kit can be used with a wide variety of RAYCHEM monitoring and control systems.

SPECIFICATIONS

Sensor housing	Aluminum; TYPE 4X
Sensor sheath	316 stainless steel
Range	–100°F to 900°F (–73°C to 482°C) maximum
Accuracy	±1°F (0.5°C) at 32°F (0°C)
Resistance	100 ohms at 0°C α =0.00385 ohms/ ohm/°C
Connection	3/4-in (19 mm) NPT conduit hub Note: The length of RTD extension wires is determined by the wire gauge used. To reduce the likelihood that electrical noise will affect temperature measurement, keep RTD extension wires as short as possible. Use shielded instrument cable such as RAYCHEM MONI-RTD-WIRE (22 AWG, PVC insulation, -30°F to 140°F, -20°C to 60°C) or Belden 83553 (22 AWG, FEP insulation, -95°F to 395°F, -70°C to 200°C).

ADDITIONAL MATERIALS REQUIRED

Pipe strap, conduit, 16-22 AWG shielded instrument cable

KIT CONTENTS

One RTD temperature sensor

APPROVALS

The RTD4AL is CSA certified to U.S. and Canadian standards.

Class I, Div. 2, Groups A, B, C, D Class II, Div. 2, Groups F, G

RAYCLIC

CONNECTION KITS AND ACCESSORIES FOR XL-TRACE, ICESTOP AND HWAT SELF-REGULATING HEATING CABLES

PRODUCT OVERVIEW

The nVent RAYCHEM RayClic connection system is a simple, fast and reliable set of connection kits developed for select XL-Trace, IceStop and HWAT self-regulating heating cables. There is no wire stripping needed because the insulation displacement connector makes the electrical connection.

The easy-to-install RayClic connection system reduces installation time, lowering the total installed cost of the heating cable system.

Simple

- No need for special tools
- Three-step installation

Reliable

- Intuitive installation
- Rugged, waterproof, UV-resistant enclosure

Cost-effective

• Quick installation

POWERED CONNECTION KITS

Catalog number	Part number	Description
RayClic-PC	233053-000	A RayClic-PC can supply power to one heating cable. Each kit contains one RayClic-PC power c onnection, one RayClic-E end seal, and one SB-04 pipe mounting bracket. The kit includes 5' power lead wires and a conduit fitting; the junction box and flexible conduit required to make a complete connection are not included. Weight: 1.8 lb (0.8 kg)
RayClic-PS	861247-000	A RayClic-PS can be used as a power connection kit for supplying power to two heating cables. Each kit contains one RayClic-PS powered splice connection, two RayClic-E end seals, and one SB-04 pipe mounting bracket. The kit includes 5' power lead wires and a conduit fitting. The junction box and flexible conduit required to make a complete connection are not included. Weight: 2.0 lb (0.9 kg)
RayClic-PT	804231-000	A RayClic-PT can be used as a power connection kit for supplying power to three heating cables. Each kit contains one RayClic-PT powered tee connection, three RayClic-E end seals, and one SB-04 pipe mounting bracket. The kit includes 5' power lead wires and a conduit fitting. The junction box and flexible conduit required to make a complete connection are not included. Weight: 2.0 lb (0.9 kg)

UNPOWERED CONNECTION KITS

Catalog number	Part number	Description
RayClic-S	559871-000	Splice kits are installed as needed to connect two heating cables together at one point. Each kit contains one RayClic-S splice. Weight: 1.3 lb (0.6 kg)
RayClic-T	014023-000	Tee kits are installed as needed to connect three heating cables together at one point. Each kit contains one RayClic-T tee connection and one RayClic-E end seal. Weight: 1.9 lb (0.9 kg)
RayClic-X	546349-000	RayClic-X kits are installed as needed to connect four heating cables together at one point. Each kit contains one RayClic-X cross and two RayClic-E end seals. Weight: 2.0 lb (0.9 kg)
RayClic-LE	P000000770	Lighted end seal kits are installed wherever an end-of-line signal light is required. Each kit contains one RayClic-LE lighted end seal and one RayClic-SB-04 pipe mounting bracket. Weight: 1.8 lb (0.8 kg)

ACCESSORIES

Catalog number	Part number	Description
RayClic-E	805979-000	The RayClic-E is a replacement end seal kit.
RayClic-SB-02	852001-000	The RayClic-SB-02 is a wall mounting bracket for use with any RayClic connection kit.
RayClic-SB-04	616809-000	The RayClic-SB-04 is a pipe mounting bracket for use with any RayClic connection kit. One pipe mounting bracket is included with each powered connection kit and the RayClic-LE lighted end seal kit.

120-277 V
30 A
150°F (65°C)
0°F (-18°C)
NEMA 4X
5/8XL1-CR/CT and 5/8/12XL2-CR/CT
GM-1XT, GM-1X, GM-2XT and GM-2X
HWAT-R2, HWAT-P1

RAYCLIC APPROVALS

718K Pipe Heating Cable 877Z De-Icing and Snow Melting

With XL-Trace and IceStop heating cable only For Class I, Div. 2, Groups A,B,C,D hazardous locations- GM-1XT and GM-2XT only

DESIGN AND INSTALLATION

For proper design and installation of a RayClic connection system, use the appropriate product design guide and the installation instructions included with the connection kit.

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many RAYCHEM control and monitoring systems meet the ground-fault protection requirement.

FTC

HEAT SHRINKABLE CONNECTION KITS FOR XL-TRACE, ICESTOP AND RAYSOL SELF-REGULATING HEATING CABLES

PRODUCT OVERVIEW

The nVent RAYCHEM FTC heat shrinkable connection kits are used with XL-Trace, IceStop and RaySol self-regulating heating cables. The nVent RAYCHEM FTC connection kits are designed to provide low cost power connection and low profile splice and tee kits. The nVent RAYCHEM FTC power connection kits can be used for circuit breakers rated up to 40 A.

POWERED CONNECTION KITS

Catalog number	Part number	Description
FTC-P XL-Trace RaySol IceStop	111711-000	Power connection kit with end seal: The FTC-P power connection and end seal kit is for use with XL-Trace, RaySol and IceStop heating cables. Materials for one power connection and end seal is included in the kit.
FTC-XC	368979-000	Power connection kit with end seal: The FTC-XC power connection and end seal kit is for use with XL-Trace and RaySol heating cables that are run through conduit to a junction box. Materials for one power connection and end seal is included in the kit.
FTC-HST	354169-000	Splice or Tee kit: The FTC-HST splice or tee kit is for use with XL-Trace, RaySol and IceStop heating cables. Material for two splice or tees included in each kit.
FTC-PSK	P00000927	Pipe stand and power connection kit: The FTC-PSK pipe stand and power connection kit is for use with XL-Trace heating cables. The stand is designed specifically for the RAYCHEM ECW-GF electronic controllers and is compatible with other junction boxes that have 1 inch NPT entries, threaded or non-threaded. Materials for one power connection and end seal is included in the kit.

FTC SPECIFICATIONS		
Rated voltage	120-277 V	
Maximum circuit breaker size	40 A	
Maximum exposure temperature	150°F (65°C)	
Minimum installation temperature	0°F (-18°C)	
Enclosure rating	NEMA 4X	
APPLICABLE PRODUCTS		
XL-Trace	5/8XL1-CR/CT and 5/8/12XL2-CR/CT	
IceStop	GM-1XT, GM-1X, GM-2XT and GM-2X	
RaySol	RaySol-1 and RaySol-2	
APPROVALS		
	Image: Displaying control of the streng st	
	With XL-Trace and IceStop heating cables For XL-Trace heating cables	
	Hazardous locations: Class I, Div 2. Groups A, B, C, D GM-1XT and GM-2XT only	

DESIGN AND INSTALLATION

For proper design and installation of a FTC connection kit, use the appropriate product design guide and the installation instructions included with the connection kit.

GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection.

ELECTROMELT

CONNECTION KITS AND ACCESSORIES

CONNECTION KITS

Catalog number	Part number	Description
EMK-XP 6 in 15.25 cm Power connection EMK-XP 6 in 15.25 cm 6 in Fower connection EMK-XP 6 in 15.25 cm EMK-XP	579519	The power connection and end seal kit is a water-resistant electrical assembly that is sealed with a proprietary adhesive and protected by a crosslinked, modified polyolefin heat-shrinkable tube. Storage temperature: -40°F to 140°F (-40°C to 60°C) Minimum installation temperature: 0°F (-18°C) Power connection wire range: 14 to 4 AWG Voltage rating: 600 V Packaging: One power connection and one end seal per box Shipping weight: 0.4 lb (182 g)
EMK-XS	356667	The splice kit is a water-resistant electrical assembly that is sealed with a proprietary adhesive and protected by a crosslinked, modified polyolefin heat-shrinkable tube. Storage temperature: -40°F to 140°F (-40°C to 60°C) Minimum installation temperature: 0°F (-18°C) Voltage rating: 600 V Packaging: One splice kit per box Shipping weight: 0.2 lb (91 g)

ACCESSORIES

Catalog number	Part number	Description
EMK-XJR	693647	The jacket repair kit is a heat-shrinkable wrap-around sleeve for covering a damaged outer jacket. The repair sleeve is adhesive- lined and comes with a removable metal closure. Nominal length: 12 in (30.5 cm) Packaging: One repair sleeve per kit Shipping weight: 0.8 lb (365 g)
EMK-XCT	906441	The nylon cable ties are seven-inch nylon industrial cable ties. Manufacturer: Panduit Model number: PLT2S-C Length: 7-3/8" ± 1/2" (18.74 cm ± 1.25 cm) Width: 3/16" (0.48 cm) Packaging: 100 per pack Shipping weight: 0.5 lb (227 g)

ELECTROMELT ACCESSORIES

Catalog number	Part number	Description
EMK-XT	980631	The crimping tool is the correct size for the crimps in the connection kit.
		Manufacturer: Ideal
		Model number: 30-425
		Length: 10" (25.4 cm)
		Packaging: One per kit Shipping weight: 1.2 lbs (545 g)
SMCS		Snow melt caution sign Dimensions 6 x 4 in (150 x 100 mm)
E-CAUTION SHOP THE		
EMK-XEJ	472207	The expansion joint kit provides physical protection for the heating cable beneath slab joints. An expansion tube is used to
3 in 7.6 cm 15.25 cm		form an expansion loop for the heating cable.
		Storage temperature: –40°F to 140°F (–40°C to 60°C)
		Minimum installation temperature: 0°F (–18°C)
22.8 cm 2 in radius 2 in (5.1 cm) Sand fill		Packaging: One expansion joint per kit Shipping weight: 0.3 lb (140 g)
EMK-XJB	052577	The junction box is a large, UL Listed weatherproof enclosure
<u>P</u>		suitable for terminating both ends of an ElectroMelt heating cable circuit. This junction box is large enough for 2 circuits of
		ElectroMelt heating cables. The enclosure is made of molded
		structural foam and provides high impact strength, excellent chemical resistance, high dielectric strength, and excellent weathering capabilities.
		Manufacturer: Carlon, model CJ12106
		Inside dimensions: 12" x 10" x 6-7/8" (30.5 cm x 25.4 cm x 17.5
		cm) Insida valuma: 825 cubic inches (13528 cm3)
11.75in		Inside volume: 825 cubic inches (13528 cm3) Outside dimensions: 15-1/2" x 11-3/4" x 7-5/8"
← 10.5in ← ← 8in ←		(39.4 cm x 29.85 cm x 19.37 cm)
		Temperature range: –40°F to 185°F (–40°C to 85°C) UL Standard: UL508
		NEMA rating: Types 1, 3, 3S, 3X, 3SX, 4, 4X, 12, 13 as indicated
н соот		Packaging: One junction box per kit
		Shipping weight: 5.4 lbs (2.45 kg)
5 5		

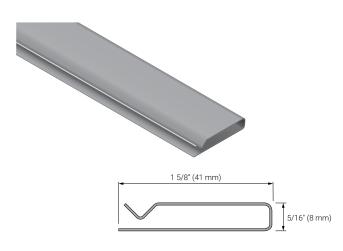
APPROVALS

877Z De-icing and Snow-melting Equipment

The EM2-XR heating cable is UL Listed and CSA Certified only when used with the appropriate agency-approved Thermal Management connection kits and accessories.

DESIGN AND INSTALLATION

For proper design and installation of an Electromelt connection kit, use the appropriate product design guide and the installation instructions included with the connection kit.


GROUND-FAULT PROTECTION

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of nVent, agency certifications, and national electrical codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many Raychem control and monitoring systems meet the ground-fault protection requirement.

CCB

CABLE COVER BRACKET

PRODUCT OVERVIEW

nVent RAYCHEM Cable Cover Bracket (CCB) is designed to mount on the roof or gutters and embeds one or two runs of self-regulating heating cable. It is used to enhance the heat transfer from the heating cable to the snow and create larger drain paths.

CCB provides:

- Long term roof deicing solution by mechanically protecting the heating cable
- Aesthetically pleasing solution by concealing the heating cable
- High performance and reliable solution for snow melt in gutters or other roof sections

CATALOG NUMBER

CCB-CU, Cable Cover Bracket, copper

CCB-AL, Cable Cover Bracket, aluminum

MATERIALS OF CONSTRUCTION		
ССВ	Aluminum (available in 30 colors. Please refer to RIM color guide H59379) Copper	
	Custom (Corten, Zinc, Lead coated copper etc.)	
ADDITIONAL MATERIALS (AS REQUIRED)	
RIM Adhesive/Sealant	Silicone adhesive for RIM systems	
PRODUCT SPECIFICATIONS (NOMINAL)		
Minimum Installation Temperature	0°F (-18°C)	

Minimum Installation Temperature	0°F (-18°C)
Overall Dimensions	Width: 1 5/8 ± 1/16 in (41 mm) Thickness: 5/16 ± 1/32 in (8 mm)
Material Thickness	Aluminum: 0.040 in
	Copper: 20 oz/ft2
Weight	Aluminum: 170 lb/1000 ft (252 kg/km)
	Copper: 310 lb/1000 ft (461 kg/km)

Before You Specify or Buy, Weigh The Facts

nVent offers the most complete line of heating technologies and services.

As the inventors of nVent RAYCHEM heat tracing products, with more than **1.75 billion feet** installed worldwide, we are the preferred brand by engineers and installers for all applications. Whether you need **products**, **design tools**, or **project assistance from our Project Services experts**, rely on the proven heating solutions leader for optimized systems to enhance the safety, comfort, and performance of your building or infrastructure projects.

Pipe Freeze Protection

Flow Maintenance

Roof & Gutter De-Icing

Surface Snow Melting

Freezer Frost Heave Prevention

Floor Heating

Hot Water Temperature Maintenance

Project Services

North America Tel +1.800.545.6258 Fax +1.800.527.5703 thermal.info@nvent.com

Our powerful portfolio of brands: CADDY ERICO HOFFMAN RAYCHEM SCHROFF TRACER

nVent.com/RAYCHEM

©2018 Nvent. All nVent marks and logos are owned or licensed by nVent Services GmbH or its affiliates. All other trademarks are the property of their respective owners nVent reserves the right to change specifications without notice. Rawchem-TH-H58036-CommHeatTracing-EN-1812